BLISS
Language Guide

Order No. AA-H275C-TK
and Update Notice No. 1
(AD-H275C-T1)

April 1983

This document is a combined tutorial and reference manual for BLISS
programming language, which consists of the dialects BLISS-16,
BLISS-32, and BLISS-36. This language, designed for transportable
system-level programming, is primarily intended for knowledgeable
users of its target systems: the PDP-11, VAX-11, DECsystem-10, and
DECSYSTEM-20.

SUPERSESSION/UPDATE INFORMATION: This document includes
Update Notice No. 1
(AD-H275C-T1)

OPERATING SYSTEMS AND VERSIONS: VAX/VMS V3.2 or higher
TOPS-10 V7.01
TOPS-20 V5.1

SOFTWARE VERSIONS: BLISS-16 V4.0
' BLISS-32 v4.0
BLISS-36 V4(160)

digital equipment corporation - maynard, massachusetts

First Printing, October 1978
Revised, January 1980
Revised, January 1982

Updated, April 1983

The information in this document is subject to change without notice and should not be con-
strued as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1978, 1980, 1982, 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

A postpaid READER’'S COMMENTS form is included on the last page of this document. Your
comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS mﬂaﬂnan
DECwriter
. ZK2274

HOW TO ORDER ADDITIONAL DOCUMENTATION

in Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
in New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian)’ Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 : c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

Contents

Preface
Acknowledgement

Chapters

1 Introduction

2. Lexical Definitions and Syntax Notation
3. BLISS Values and Data Representations
4 Primary Expressions

5 Computational Expressions

6 Control Expressions

7. Constant Expressions

8. Blocks and Declarations
9 Attributes

0 Data Declarations

11. Data Structures
12. Routines
13. Linkages

14. Binding
15. Lexical Processing
16. Macros

17. Condition Handling

18. Special Features

19. Modules and Programs

20. Character Handling Functions

Appendices
A. Predefined Identifiers
B. String Encodings
C. Transportability Checking
D. Builtin Functions
Index

NOTE: Each chapter is preceded by a detailed table of contents for that chapter.

iii

Preface

Manual Objectives

The objective of this manual is to provide (1) a complete description of the
BLISS programming language and (2) tutorial information on its use. This
manual documents the three dialects of the language: BLISS-16, BLISS-32,
and BLISS-36. It is intended as a self-teaching manual for experienced high-
level language users, and as a reference tool. It does not describe the BLISS
compilers (except in overview fashion) or their operation; this is done in
separate User’s Guides.

Intended Audience

This manual is primarily intended for system programmers, including those
whose programming tasks would traditionally imply the use of assembly lan-
guage. It is also addressed to other programmers for whom the transportabil-
ity of programs between several BLISS target systems is of prime concern.
Familiarity with the basic architecture of one or more of the target systems is
assumed; familiarity with the relevant assembly language is not assumed,
however. The BLISS target systems are the VAX-11, PDP-11, DECsys-
tem-10, and DECSYSTEM-20.

Structure of this Document

The manual begins with three chapters that lay the foundation for the defini-
tion of BLISS. Chapter 1 discusses the BLISS dialects, introduces fundamen-
tal concepts, and illustrates the main features of the language. (It is an essen-
tial part of the manual.) Chapter 2 discusses the organization of the language
definition and describes the syntax notation used in this manual. Chapter 3 is
an introduction to the data and program structure of BLISS.

The next seventeen chapters of the manual, Chapters 4 through 20, provide a
complete description of the language. This description includes not only the
rules for interpreting BLISS programs, but also examples, explanations, and
programming guidelines.

The manual has four appendices. Appendix A is a list of the identifiers that
have predefined meanings in BLISS. Appendix B defines the several string
encodings available in BLISS. Appendix C describes the transportability
checking that is optionally provided by the BLISS compilers. Appendix D is a
list of the builtin machine-specific-functions associated with each RLISS dia-
lect.

Associated Documentation

The following documents relate specifically to BLISS and the use of its
compilers:

e BLISS Pocket Guide
A syntax and command summary for all dialects and host systems
® BLISS-16 User’s Guide

For BLISS-16 compiler usage on the VAX-11, DECsystem-10, or DEC-
SYSTEM-20
Target system — PDP-11

e BLISS-32 User’s Guide

For BLISS-32 compiler usage on the VAX-11
Target system — VAX-11

e BLISS-36 User’s Guide

For BLISS-36 compiler usage on the DECsystem-10 or DECSYSTEM-20
Target system — DECsystem-10 or DECSYSTEM-20

Each User’s Guide provides machine-specific programming information as
well as basic information about linking and executing BLISS programs on the
target system.

For VAX-11 users: The following documents provide additional information
relating to the linking, execution, and debugging of BLISS-32 programs under
the VAX/VMS operating system:

e VAX-11 Linker Reference Manual
e VAX/VMS Command Language User’s Guide
o VAX-11 Symbolic Debugger Reference Manual

The VAX-11 Information Directory lists and describes all other documents
that you may need to refer to in the course of building and executing a
BLISS-32 program.

vi

ACKNOWLEDGEMENT

The BLISS system described in this manual is based on
concepts and experience drawn from earlier versions of
BLISS, known as BLISS-10 and BLISS-11. These earlier
versions were conceived and developed by members of the
Department of Computer Science at Carnegie-Mellon
University. Digital Equipment Corporation gratefully ac-
knowledges the significant contribution provided by these
prior developments.

vii

Chapter 1

Introduction
1.1 BLISS Dialects v v v v v v e e e e e e e e e e e e e e e 1-1
1.2 Language Objectives and Characteristics 1-2
1.2.1 Design Objectives.o 1-2
1.2.2 Language Overview.« « v v o 1-2
1.3 Program Developmento 0000 1-3
1.4 The Main Features of BLISS. 1-4
1.41 Data. o o e e e e e e e e e e e e e e e e e e e 1-4
1.4.2 Memory Addressing.o oo oo 1-5
1.4.3 Fetching Values 1-5
1.4.4 Assigning Values oo 1-6
1.45 Expressions.o e 1-6
146 Blocks e e e e e e e e e 1-7
1.4.7 Declarations« .t ot e e e e e e e e e e 1-9
1.4.8 Structures« v v v e e e e e e e e e e e 1-10
149 Flowof Control.« o « v v v v v v oo 1-10
1430 LoOpS . . v v v v e e e e e e e e e e e e e e e e 1-11
1.4.11 Bindingof Names o 1-12
1.5 Program Transportability. 1-12
1.6 Effects of Optimization« .« . 1-14
1.7 The BLISS Programming System. 1-14
1.7.1 System Components« .« .. 1-14
1.7.2 Constant Expressions« . . oo 1-15
1.8 A Complete Program. o 1-16

Chapter 1
Introduction

BLISS is a system implementation language for three DIGITAL computer
families:

¢ The 16-bit PDP-11 line,
e The 32-bit VAX-11 line, and
¢ The 36-bit DECsystem-10 and DECSYSTEM-20 lines.

Because of the dissimilarities among these target systems, BLISS has three
dialects: BLISS-16, BLISS-32, and BLISS-36. The numeric suffix indicates
the word length, in bits, of the respective target system.

BLISS is classified as a system implementation language — rather than an
application-oriented language — because BLISS is primarily intended for
building system software, such as operating systems, compilers, utilities, and
real-time processors. Such software is often large and complicated, is often
close to the hardware, and is usually very sensitive to efficiency. In addition,
most system software is very frequently used by many individuals (in some
cases with an unpredictable variety of input data), and therefore must be
highly dependable.

1.1 BLISS Dialects

Each BLISS dialect is supported by a separate compiler. The BLISS-16 com-
piler is a cross-compiler, that is, it executes on a VAX-11, a DECsystem-10,
or a DECSYSTEM-20 but compiles code for its target system, the PDP-11.
The BLISS-32 and BLISS-36 compilers are native: they execute on their own
target system. Each BLISS compiler is described in a BLISS User’s Guide for
that dialect.

BLISS-16, BLISS-32, and BLISS-36 are dialects of a single language. Each
dialect consists of a body of identical language features called Common
BLISS (which forms the bulk of each dialect), plus a number of features
either unique to one dialect or shared by only two of the three. Common
BLISS constitutes the transportable language base.

1-1

The dialect-specific features reflect architectural characteristics of one target
system that are not found in each of the others, for instance byte-addressing
capability, found in the 16- and 32-bit target systems but not in the 36-bit
systems. While it is possible to implement most programs in Common BLISS
only, without reference to system-specific functions or characteristics, it is not
always desirable to do so. This point is discussed further under the topic of
transportability.

1.2 Language Objectives and Characteristics

1-2

1.2.1 Design Objectives

Because of the system-software orientation of BLISS, a number of its primary
objectives differ from those of application-oriented languages such as
COBOL, FORTRAN, and PL/I. Foremost among those objectives are:

1. Highly optimizable object code.
2. Simple and consistent facilities for operating on addresses.

3. Control constructs which encourage well structured source code, in the
interests of program reliability, clarity, and maintainability.

4. Facilities for defining both the representation of a user-designed data
structure and the manner of accessing the data in that structure.

5. Optional access to specific features of the target-system hardware or
operating system.

6. Facilities for defining, at an appropriately high level, the linkage con-
ventions used in calling routines or procedures.

Because the language supports three different computer systems, an addi-
tional objective is program transportability across the target systems. BLISS,
therefore, includes many features specifically designed to facilitate trans-
portable programming. These features are discussed later in this chapter
(Section 1.5).

1.2.2 Language Overview

BLISS has many of the features of other modern high-level languages. It has
block structure, an automatic stack, and mechanisms for defining and calling
(recursive) routines. It uses algebraic notation for calculations and has opera-
tions for arithmetic, shifting, comparison, and logic. It provides a variety of
predefined data structures and permits the programmer to define additional
data structures. It has facilities for testing and iteration that support clear
and reliable programming. (These same facilities also allow the compiler to
perform extensive flow optimizations.)

On the other hand, BLISS omits certain features of other high-level lan-
guages. It does not have built-in facilities for input/output, because a system-
software project usually develops its own input/output or builds upon basic
monitor I/O services. It avoids certain kinds of automation of the program-

Introduction

ming process which introduce inefficiency for the sake of convenience. It is
machine dependent to the extent that it permits access to machine-specific
features, since system software often requires this.

BLISS has characteristics that are unusual among high level languages. A
name representing a data segment (that is, a storage location) is uniformly
interpreted as the address of that segment rather than the value of the seg-
ment, and the language includes an explicit fetch operator that denotes “con-
tents of”’.

Also, BLISS is an ‘expression language’ rather than a ‘statement language’.
This means that every construct of the language that is not a declaration is an
expression. Expressions produce a value as well as possibly causing an action
such as modification of storage, transfer of control, or execution of a program
loop. For example, the counterpart of an assignment ‘‘statement” in BLISS is,
strictly speaking, an expression that itself has a value. The value of an expres-
sion can either be used or discarded in BLISS. When the value of an expres-
sion is discarded, the expression is said to be used in a “statement like” way,
i.e., used solely for the action or side-effect that it produces. (See Section 1.4.5
for further discussion.)

Finally, BLISS includes a macro facility that provides a level of capability
usually found only in macro-assemblers.

The remainder of this introduction provides a first look at some specifics of
the language. The several steps involved in the development of a BLISS
program are outlined, the main features of BLISS are described, the compo-
nents of the BLISS software system are discussed, and finally a simple but
complete BLISS program is given.

1.3 Program Development

The typical development of a BLISS program, from inception to successful
execution, is outlined below in order to introduce certain concepts and terms
used later in this manual:

1. Design. To provide a logical structure for the program, it is organized
into a set of routines and associated data structures. In general, each
routine corresponds to a clearly identified, relatively independent func-
tion or subfunction of the program. One of the routines is the main
routine. Later, when the program is executed, this routine is called by
the operating system. The main routine controls the overall flow of the
program, calling other routines which may in turn call yet other
routines, and so on, until every routine has done its assigned job.

2. Programming. Once the routines and data structures have been de-
signed, they are programmed in the BLISS language. The routines are
grouped into modules for the purposes of compilation. The routines
grouped into a given module might, for example, consist of those pro-
grammed by one member of a project team. They might also reflect a
logical grouping that aids overall system understanding and facilitates
structured testing. Each module is a text file that is called a BLISS
source file.

Introduction 1-3

3. Compilation. Once the modules have been programmed, each module
is compiled. Each module can be compiled individually, and this is one
practical advantage of dividing a large program into several modules.
The result of each compilation is an object file. An object file is a
sequence of encoded machine instructions and linker. directives that is
equivalent to the corresponding source module.

4. Linking. When all the modules of a program have been compiled,
they are linked. The linker effectively “binds together” the various
object modules, supplies any routines requested from a common-routine
library, and converts the compiler-encoded relative addresses to actual
machine addresses. (Section 1.7.1 gives further details.) The result of
linking is a single file that contains the executable program image.

5. Execution. The program image is executed. The first executions are
normally done with the assistance of a debugging package. As bugs are
found, the development process cycles back to compilation, program-
ming, or, most unfortunately, to design. Eventually, the program is
ready for useful execution.

This manual provides the information necessary for the second step in the
development process, programming. The BLISS user’s guides (one for each
dialect) provide complete information about the third step, compilation, plus
guidelines for linking, executing, and debugging.

The user’s guides also contain detailed information about certain dialect-
specific features, such as machine-specific functions and module switches
that describe the target-system environment, and about transportable pro-
gramming.

1.4 The Main Features of BLISS

1-4

This section contains a brief description of BLISS. Those aspects of BLISS
that are different from other high level programming languages are empha-
sized. The description is informal and omits many details; its purpose is to
provide the reader with an intuitive understanding of BLISS that will be
useful in further study of the language.

1.4.1 Data

All BLISS calculations are performed on values that correspond, in size, to
the largest efficiently-accessible unit of memory in each target system. This
value, called a BLISS fullword, is 16 bits long for BLISS-16 (PDP-11 word),
32 bits long for BLISS-32 (VAX-11 longword), and 36 bits long for BLISS-36
(DECSYSTEM-10/20 word). A fullword can be viewed as a sequence of sin-
gle-bit logical values (true or false), as a sequence of ASCII character codes, or
as a unitary value. As a unitary value, it can be interpreted as a signed
integer, an unsigned integer, or a memory address.

In many high level languages, a specific interpretation or “type” is perma-
nently associated with each program variable. For example, one variable
might be declared as containing an address value while another contains an
unsigned integer. In BLISS, however, an interpretation is not associated with

Introduction

a variable. Instead, the interpretation of the value is specified by the operator
that is applied to it. For example, BLISS has three operators for equality:
EQL, EQLU, and EQLA. These operators interpret their operands as signed
integers, unsigned integers, and memory addresses, respectively.

In order to conserve storage, data is often stored in fields, which are units of
data that are less than a fullword in length. One field of special importance in
all three dialects is the bit, which can be used to store a single logical value. In
both BLISS-16 and BLISS-32, the 8-bit byte can be efficiently accessed and
manipulated, and used for instance to store an ASCII character. In BLISS-32,
the 16-bit word (which is the fullword of BLISS-16) can also be manipulated
efficiently by the target hardware. No matter what field size is involved,
however, a field value is always extended to a fullword value whenever it is
fetched from memory.

1.4.2 Memory Addressing

Although calculations are always performed on fullwords, memory is ad-
dressed in fullword units only in the case of BLISS-36, where the target
system’s addressable unit is the full machine word. In both BLISS-16 and
BLISS-32, the basic addressable unit is the byte. That is to say, if a memory
address is incremented by 1 in either of these dialects, the location pointed to
by the resulting address value is the next byte, not the next fullword.

Therefore, in order to precisely describe the interpretation of an address ex-
pression such as X+8 in a dialect-specific fashion, several different formula-
tions would be required for the same expression. For example, assuming a
fullword-reference context, the interpretation of the expression X+8 for
BLISS-16 or BLISS-32 would be: “Locate the fullword of memory that begins
eight bytes after the byte whose address is X’’; whereas the interpretation for
BLISS-36 would be: “Locate the fullword of memory that is eight fullwords
after the fullword whose address is X"'.

In the interest of both generality and brevity, the non-specific term “address-
able unit” is used instead of “‘byte’” or “fullword’’ in such descriptions, so that
the two formulations given above reduce to the equivalent one: ‘“Locate the
fullword that begins eight addressable units after the unit whose address
is X”.

1.4.3 Fetching Values

In many programming languages, the interpretation of the name of a storage
location depends on its context. Consider FORTRAN, for example. If the
name appears as the left-hand side of an assignment, it represents the address
of the storage location. If the name appears within an expression, it represents
the contents of the storage location.

In BLISS, however, the interpretation of the name of a storage location does
not depend on the context. Instead, the name always represents the address of
the storage location. For example,

X+3

is evaluated by adding 3 to the address that is associated with X.

Introduction 1-5

e 7

When the content of a storage location is needed. the fetch operator, ©.”, is
used. For example:

K+ 3

This expression is evaluated by adding 3 to the content of storage-unit X.
More exactly, the value of the expression is obtained as follows: Locate and
fetch the fullword of memory that begins with the addressable unit whose
address is X, and add 3 to the fetched value.

The fetch operator is an unusual feature of BLISS; it is not present in such
languages as ALGOL, COBOL, FORTRAN, and PL/I. The omission of a fetch
operator here and there is a frequent error among most beginning BLISS
programmers. On the other hand, because BLISS always interprets a name as
an address, it is easy to treat addresses as data, and address arithmetic can be
performed in a simple and consistent way.

1.4.4 Assigning Values

A value is assigned to storage by an assignment operator, “‘="". An example of
an assignment is:

;o=

M
" “~

This assignment means “form a fullword value that represents 2, and then
store that value in the fullword of memory whose address is X.”

In BLISS, an assignment can be viewed as just another expression. Its first
operand (left-hand-side) provides a value that is interpreted as the address of
a data segment. Its second operand (right-hand-side) provides a value that is
stored at the given address. The assignment expression itself has a value,
namely the value of its second operand; more is said of this in the next
section.

Often the left-hand-side of an assignment is just a name. However, in BLISS
there is no restriction on the expression that appears on the left-hand-side of
an assignment. Whatever that expression is, it is evaluated and the resulting
value is interpreted as an address. For example,

K+6 = 2

assigns 2 to the fullword of memory that begins six addressable units after the
unit whose address is X. The example just presented is valid and illustrates
an important feature of BLISS. However, such an assignment would not
appear in a well-designed program, and especially not in a transportable one.
Instead, an address computation, such as X+6 in the example, would be
performed through a structure-reference (see Chapter 11).

1.4.5 Expressions

Many high level programming languages classify each construct of the lan-
guage either as a statement, which performs an action without producing a
value, or as an expression, which calculates a value. For example, such lan-

1-6 Introduction April 1983

guages classify the assignment construct as a statement, and do not permit its
use in a context requiring a value.

In BLISS, any construct except a declaration can be used as an expression.
For constructs that are statement-like, BLISS defines a value. For example,
the value of an assignment is the value of the right-hand side of the assign-
ment. The expression

2#(B = J.C + 1)

contains an assignment. When the expression is evaluated, it calculates
2*(.C+1). At the same time, without performing any additional calculation, it
stores the value of .C+1 in location B.

The absence of statements from BLISS does not require a new approach to
programming. Whenever a construct is used in a statement-like way, it is
terminated by a semicolon and its value is discarded. The expression

Q = 2%.Ri

is a terminated expression. It assigns the value of 2*.R to Q and then, having
no further use for the value, discards it. Such constructs as this, ending with a
semicolon, play the role of statements in BLISS.

1.4.6 Blocks

A block is a syntactic feature of BLISS that is used to gather together a
portion of a program and make it into a single unit (in fact, into a form of
expression). In its most familiar form, a block is the keyword BEGIN followed
by a sequence of declarations followed by a sequence of terminated expres-
sions followed by the keyword END. An example is:

BEGIN

LOCAL TEMP;

TEMP = %}

s, - A\ =
o= W Y3

¥ = JTEMP]
END

This block contains one declaration and three terminated expressions. The
declaration specifies that TEMP designates a storage location that will be
used only during execution of the block. Each of the three terminated expres-
sions is an assignment and, together, they exchange the contents of X and Y.
The entire block is, itself, a primary expression. Sometimes it is useful to
provide a value for a block. In that case, an expression without the terminal
semicolon is placed at the end of the block. An example is:
Z = BEGIN

LOCAL TEMP;

TEMP = X3

K= o aYi

Y = JTEMPj;

OEQL LY

END
This block exchanges the contents of X and Y just as the previous example of
a block did. In addition, the contents of X and Y are compared and the value

Introduction 1-7

1-8

of the block is 1 or 0, depending on whether or not the values are equal. When
execution of the block is complete, its value is assigned to Z.

In the first example, if the semicolon following the final expression
(Y = .TEMP) were omitted, the block would have as its value the contents of
location TEMP, according to the evaluation rule given for assignments in
Section 1.2.4. (Chapter 8 gives a full description of the semantics and use of
the semicolon in the context of expressions and blocks.)

A block that does not contain declarations is called a compound expression.
An example that uses such a block is:

IF A NEG O

THEN
BEGIN
B = P + A%
C= .0 + ,A;
END

In this example, the compound expression gathers two separate assignments
into a single construct. Both assignments are performed if the content of A is
not 0 and both are skipped otherwise.

In BLISS, a parenthesis pair and a BEGIN-END pair can be used inter-
changeably. For example, the preceding example can be written equivalently
as:

IF A NEO ©
THEN

OP + OA;
Q + LA

-0~

or, more compactly, as:
IF A NEO O THEN (B = P + ,A5 C = ,0 + ,A3)

A block that uses a parenthesis pair and contains just one expression is a
parenthesized expression; it is the ultimate specialization of a block. An ex-
ample of the use of some parenthesized expressions is:

(A + 1)%(B -~ 1)

Because the parentheses are present, the addition is performed before the
fetch operation, and the multiplication is performed last of all. When the
parentheses are removed, the expression is:

+A + 1x%B - 1

This expression has a different meaning because the operators refer to differ-
ent operands. According to the priority rules given in Chapter 5, the fetch
operation is performed before the addition, and the multiplication is per-
formed before the addition or subtraction. Thus parenthesized expressions are
used to override the priority rules.

Introduction

1.4.7 Declarations

Every name in a BLISS program must be declared. The purpose of the decla-
ration is to provide the BLISS compiler with information about the name. A
simple example of a declaration is:
OWN
%3

This declaration says that X designates a storage location that is permanently
allocated (in the OWN program section) before program execution begins.
(Note that, in the context of declarations, the semicolon is simply a manda-
tory terminator.)

A more complicated example of a declaration is:

OWN
ALPHA: VECTORC1001 INITIAL(REP 100 OF (0))3

This declaration not only specifies that ALPHA is an OWN name, but also
gives two attributes, which begin with the keywords VECTOR and INITIAL.
The VECTOR attribute describes the structure of the storage designated by
ALPHA. The INITIAL attribute provides initial values for the storage.

The preceding examples are declarations of names of data addresses. An
example of the declaration of a name of a routine address is:

ROUTINE EXCHANGE(A:B): NOVALUE =

BEGIN
LOCAL

TEMP 3
TEMP = A3
A= LB
B o= JTEMPS
END 3

This routine exchanges the contents of the two locations that are given
through the formal names, A and B. The extra fetch operator used with these
formal names reflects the fact that a formal name is the address of a storage
location that contains a parameter; it is not the parameter itself.

The attribute NOVALUE indicates that this routine does not return a value,
since the last expression within the routine body is a terminated expression.
Therefore, a call on this routine must appear in a context that does not require
a value. For example, the call could be used in a statement-like way. The
semicolon following the keyword END is simply the required declaration ter-
minator, and as such has nothing to do with whether or not the routine returns
a value.

Some names do not represent addresses. For example,

MACRO
Q = 03 %3

declares the name of a macro, Q. During compilation, every occurrence of Q in
the scope of this declaration is replaced by the text “0,3”.

Introduction 1-9

1-10

Declarations are scoped by the block structure of a program. The same name
can be used in different blocks for different purposes. Thus it is not necessary
to use an awkward name because the appropriate name has been used in some
other part of the same program.

1.4.8 Structures

The most commonly used forms of data structures are defined as part of
BLISS. An example of a use of such a structure was given in the preceding
discussion of declarations; it is:

OWN
ALPHA: VECTORLC1001 INITIAL(REP 100 OF (0))3

In this declaration, VECTORI[100] is the structure-attribute. It specifies that
ALPHA designates a data-segment in storage that is not a single fullword, but
rather is a sequence of 100 fullwords. The first of the fullwords is referenced by
ALPHAIO], the second by ALPHA[1], and so on up to ALPHA[99]. An example
of a reference to this vector is:

ALPHAL.,I-11 = 5

Suppose that, for a given execution of this assignment, the content of I is 8.
Then the assignment is equivalent to

ALPHAL71 = 5
and its effect is to set the eighth element of the vector to 5.

In addition to VECTOR, three other kinds of data structures (BITVECTOR,
BLOCK, BLOCKVECTOR) are defined as part of BLISS. Beyond that, how-
ever, is the capacity of BLISS to accept programmed definitions of data
structures. This feature permits the programmer to define data structures
that are designed precisely for a given application. A part of the data-struc-
ture definition is the ‘algorithm’ for accessing the structure. For example, a
structure can be programmed to pack data in a way that saves storage or to
include special checks for illegal accesses.

1.4.9 Flow of Control

Alternative actions to be taken by a program can be controlled by a condi-
tional-expression. An example is:

IF X GTR O
THEN

A - v
I - LAY

ELSE

LV A
EAY

This example sets Y to the absolute value of the contents of X. It ends with a
semicolon, and is therefore a statement-like use of a conditional-expression.
Another example is:

¥o= (IF WX GTR O THEN X ELSE -.,X)3

This example also sets Y to the absolute value of the contents of X. However,
in this example the value of the conditional-expression is used. Its value is .X

Introduction

or -.X, depending on whether or not the test is satisfied. Once the value of the
conditional-expression is calculated, it is assigned to Y.

A more specialized construct for alternative flow of control is the case-expres-
sion. An example is:

CASE +X FROM 1 TO 8 OF

SET

L11: REPORTL1(.Z) 3
L271: REPORTZ2(.Z) 3
Ld,71: Q = JZ+13

[INRANGEI: ERROR1C.Z)3
[OUTRANGET: ERRORZ(.Z) 3
TES S

The interpretation of this expression begins with the evaluation of .X; then,
depending on the value of .X;, one of five actions is taken. If the value is 1, the
routine REPORT!1 is called. If the value is 2, the routine REPORT? is called.
If the value is 4 or 7, the assignment Q = .Z+1 is performed. If the value is in
the range from 1 to 8 but is none of the previous cases, then the routine
ERRORI is called. If the value is outside of the range 1 to 8, then the routine
ERROR?2 is called.

A third construct for alternative flow of control is the select-expression, which
lies between the conditional-expression and the case-expression in its degree
of specialization.

1.4.10 Loops

Iterative actions are controlled by loop-expressions. An example of the use of a
loop-expression is:

DWN

SUM »

LIST: VECTORLZ2113
UM = 03
INCR I FROM O TO 20 DO

SUM = J8UM + JLISTL.I13

The loop-expression in this example forms the sum of the 21 elements of the
vector LIST. It does so by executing the assignment 21 times, once each for .I
equal to 0, 1, 2, and so on through 20. In this example, the loop-expression is
followed by a semicolon and is therefore used in a statement-like way. Note
that the ‘control parameters’ (0 and 20 in this case) can be any form of
expression that has a value.

A second example of the use of a loop-expression is:
OWN

Koy
LIST: VECTOREZ2113
¥ = (INCR I FROM O TO 20 DO
IF +LISTCL.I1 EQL O THEN EXITLOOP .I)3

The loop-expression in this example searches the vector LIST for an element
that is 0. If a 0 is found, the value of the loop-expression is .I; that is, a value

Introduction 1-11

between 0 and 20 that shows where the 0 was found. If a 0 is not found, the
loop runs to completion and the value of the loop-expression is (by definition)
-1. In this example, the value of the loop-expression is used to provide, in a
convenient way, for the case that there is no 0 in LIST.

1.4.11 Binding of Names

Most of the names in a BLISS program represent addresses — either data
addresses or routine addresses. The operation of associating an address with a
name is called binding. Once the name is bound, the use of the name becomes
equivalent to the use of the address to which it is bound.

As an example of binding, consider the following use of the name BETA:

OWN
BETAS

LI}

BETA = 43

Suppose that BETA is bound to the address 1203. Then the assignment in the
example is equivalent to:

1203 = 43

In nearly all cases, the programmer does not know or care to know the address
to which a name is bound. Storage is allocated by the compiler, the linker,
and the operating system, and the programmer simply wants references to
storage to be consistent.

Occasionally, a programmer does want to access a particular location. Sup-
pose, for example, that a fullword used for communication with a certain
input/output device is in location 80. Then that location can be set as follows:
BIND
10W = BOj

LAY

I0W = 03

In this case, the assignment is entirely equivalent to

80 = 03

The use of the BIND declaration makes the intentions of the programmer
clear, not only to the reader but also to the compiler.

1.5 Program Transportability

1-12

Transportability of software is the use of the same source program in more
than one system environment. The basis for transportable programming in
BLISS is the extensive language base referred to as Common BLISS. In addi-
tion, BLISS provides many specific facilities that aid in achieving transporta-
bility along with efficiency, either through (1) parameterization of Common
BLISS constructs, or (2) conditional or compartmented use of dialect-specific
code.

Introduction

The major facilities that support transportable programming are the follow-
ing:
¢ Predefined data structures, e.g. VECTOR, BITVECTOR, BLOCK, that

allow commonly used data structures to be allocated and accessed effi-
ciently in each target environment.

¢ Predefined literals, that reflect the parameters of the target architectures
in terms of bits. These literals can be used, for example, to parameterize
data declarations and storage references for greatest efficiency on each
intended target system.

A listing of the predefined literals and their values for each target system

follows.
Value in:
Name Meaning BLISS-16 BLISS-32 BLISS-36

%BPVAL Bits per

BLISS value 16 32 36
%BPUNIT Bits per

addressable unit 8 8 36
%BPADDR Bits per

address value 16 32 18 or 30!
%UPVAL Units per

BLISS value 2 4 1

(1. Depending on the target-system CPU.)

¢ User-definable data structures and named fields. The structure definition
is a representation of the accessing algorithm, and it can make use of the
predefined literals to provide field packing that is optimal for each target
architecture.

e Character string functions, that permit efficient manipulation of string
data regardless of the representation on the target architecture. Exam-
ples: CH$PTR creates a character-string pointer, CH$MOVE moves a
character string, and CHSCOMPARE compares the value of two strings.
There are approximately 25 such functions.

¢ Compile time conditionals, that allow compiled code to be explicitly dif-
ferent for different target architectures.

e Powerful macro facility, that allows for different expansions for different
target systems, e.g. %BLISS32(BYTE) expands to its parameters (BYTE
in this case) only if being compiled by the BLISS-32 compiler. Macros
can also be used to segregate code sequences that differ for each architec-
ture.

Introduction 1-13

¢ REQUIRE and LIBRARY files. Sets of common definitions can be kept in
files that are selectively included in compilations through use of the RE-
QUIRE or LIBRARY declarations. This is a simple and efficient method
of sharing common data structures and definitions between modules in a
conditional fashion. It also permits compile-time conditionals and
parameterized definitions to be maintained separately from the code in
the modules.

1.6 Effects of Optimization

The semantic definitions of the BLISS language in this manual describe the
useful, perceptible results of program execution as if those results were
achieved without optimization of the object code. Wherever possible, then,
the manual avoids discussion of how the results are actually obtained. The
only exceptions are where a discussion of object code enables the programmer
to make a more efficient choice between several alternative constructs, for
example, between two types of control expressions. In particular, the opti-
mization strategies employed by the compiler are not described. The opti-
mizations reduce the cost of program execution, by eliminating some of the
actions defined by the language semantics, but they never affect the final
results.

In some cases, however, the optimizations can be so extensive (global flow
optimizations) that the object code generated does not show any obvious
correlation to the corresponding sequence of source code. The degree of opti-
mization performed by the compiler can be controlled by optimization
switches, either in the module head (Chapter 19) or in the compiler command
line. The BLISS user’s guides describe the kinds of optimizations performed
and the effect of the various optimization switches.

1.7 The BLISS Programming System

1-14

The BLISS programming system is the collection of software programs that
supports the development of BLISS programs. Some of the components of the
BLISS system are used only for BLISS programs; the compiler is an example.
Other components are shared with other programming language systems; the
linker is shared in this way.

Operating instructions for the compiler or the linker are not given here. Such
instructions are essential (and are given in the appropriate BLISS user’s
guide), but they never, or almost never, affect the results of program execu-
tion as described in this manual.

This section describes the components of the BLISS system and then goes on
to talk about the evaluation of constant expressions by two components of the
system, the compiler and the linker.

1.7.1 System Components

The BLISS system has five main components: the compiler, the linker, the
operating system, a debugging package, and a set of utilities. These compo-
nents are briefly described in the following paragraphs.

Introduction

The compiler is especially written for the BLISS system (one for each dialect).
It accepts a BLISS module as its input or source file. It produces an unlinked
target-system program as its object file (although the compiler used for a
given dialect may itself actually execute on another computer system, i.e.,
may be a cross-compiler). Because, as discussed above, the compiler performs
complicated and large-scale optimizations, the relationship between the
source file and the object file is sometimes difficult to perceive; that is, it can
be difficult to find the specific instructions that implement a particular
BLISS expression. Therefore, a plan for developing a BLISS program should
involve as little reference to the object file as possible.

The compiler takes only one module at a time as its input. Therefore, the
compiler cannot determine addresses that are used in the given module but
declared in other modules; such addresses are external and must be left blank
(unlinked in the object file). Furthermore, the compiler does not determine
the absolute addresses of routines and data. Instead, the compiler expresses
addresses as offsets relative to certain base addresses.

The linker is a target-system utility program that is shared by all of the
programming languages for the target system. It accepts an unlinked object
program, produced by the compiler, for each module of a program. It produces
an executable program image as its output.

The linker takes up where the compiler leaves off, and finishes the job of
preparing the program for execution. It has access to all modules of the pro-
gram and can therefore fill in the external addresses. It can determine the
required base addresses for routines and data and can therefore replace static
offset addresses with absolute addresses.

The operating system is a collection of target-system utility programs that are
essential to any programming job. It includes a command that executes a
program. This command loads the program image and starts execution.
Thereafter, the operating system manages input/output, handles interrupts,
and generally oversees program execution.

The debugging package is a program that assists a programmer in checking
out a program. The package includes features for dumping data in convenient
representations and formats, for tracing data through the execution of the
program, for establishing break points to halt program execution, and so on.

The BLISS utilities are a collection of programs especially written to support
the BLISS programming process. One such utility, for example, is the BLISS
source-program formatter. The utilities are described in the BLISS User’s
Guides and in on-line documentation files available with each BLISS system.

1.7.2 Constant Expressions

When the value of an expression cannot change throughout program execu-
tion, it is a constant expression. Many important techniques for optimizing a
program depend on the recognition and evaluation of constant expressions.

Some constant expressions can be evaluated as soon as they are written down.
For example, the value of the numeric-literal 52 is obviously fifty-two. Other
constant-expressions depend on addresses that are determined either by the

Introduction 1-15

compiler or by the linker. For example, the value of the expression X+6
depends on the address that is associated with X.

When the value of a constant expression is determined, the expression is
bound. The process of associating values with constant expressions is a form
of binding. These terms are most often applied to names; however, in BLISS a
name is just a special case of an expression, and a bound name is just a special
case of a bound expression. The main activity of the linker is to bind the
names used in a program to appropriate addresses.

In certain contexts, BLISS requires a compile-time-constant-expression; that
is, an expression that can be bound by the compiler. For example, when a
VECTOR data segment is declared, its size must be given as a compile-time-
constant-expression; this restriction permits the compiler to allocate storage
for the data segment and thus avoid the expense of dynamic storage alloca-
tion.

Since the compiler does not determine absolute addresses, a compile-time-
constant-expression usually cannot depend on a name that represents an ad-
dress. The exception occurs in expressions such as X-Y or X EQLA Y; in
these expressions, the offset addresses for X and Y (which are determined by
the compiler) are sufficient to determine the values of the expressions.

In certain other contexts, BLISS requires a link-time-constant-expression;
that is, an expression that can be bound by the linker. Since all addresses are
determined by the linker, a link-time-constant-expression can depend on a
name that represents an address. Further details about both compile- and
link-time-constant-expressions are given in Chapter 7.

Much of BLISS programming can be done without regard for the fact that a
program goes through compilation and linking before it can be executed. The
compile- and link-time-constant-expressions are important exceptions to this
rule.

1.8 A Complete Program

1-16

An example of a complete program follows. The purpose of the example is to
illustrate the overall structure of a BLISS program. The example is not a
realistic program, although it is executable. A realistic program would require
many pages for its listing as well as many pages of explanation. Instead, the
example is a short program that reads a number from the terminal, adds one
to it, and prints out the result.

The program is composed of two modules, TIO and E1. The first module,
TIO, is assumed to be a general-purpose library module that performs
input/output at the user’s terminal. It includes an input routine, GETNUM,
that reads a number that has been entered at the terminal, and an output
routine, PUTNUM, that prints a given number at the terminal. The module
TIO is not listed here.

Introduction

The second module, E1, is the specialized portion of the example program. It
controls the entire process and performs the specified operation (the addition
of 1) on the given data. This module is presented here.

MODULE E1 (MAIN = CTRL) =
BEGIN

FORWARD ROUTINE
CTRL »
STEP}

ROUTINE CTRL =

t+
! This routine inPuts a values orPerates on it and

! then outputs the result.,
-

BEGIN
EXTERNAL ROUTINE
GETNUM » I Input a number from terminal
PUTNUM I Outeut a number to terminal
LOCAL
o | Storade for input value
] I Storade for ouwtrput value

GETNUMCX) 3§

Y = GTEP(.X) 3§
PUTNUMC . Y)
END 3

ROUTINE STEP(A)

L+

! This routine adds 1 to the diven value.
-

(vA+1) 3

END
ELUDOM

An informal discussion of this module follows. Only the main features are
mentioned, and some new terminology is introduced. The purpose is to give a
general idea of how a module is constructed and how it works.

The module includes comments, each of which begins with an exclamation
mark. Not included, however, is a long comment that normally appears at the
beginning of a module and provides information about copyright, authorship,
revisions, and so on.

The outer structure of the module is:

MODULE E1 (MAIN = CTRL) =
BEGIN

‘e

END
ELUDOM

Introduction 1-17

1-18

The first line gives the name of the module, E1. It also specifies that the main
routine for the entire program is CTRL; therefore, when the program is exe-
cuted, the operating system will call CTRL. The three dots represent the body
of the module.

The body of the module begins with a forward-routine-declaration, which lists
the names of the routines that are declared in the module. The remainder of
the body is devoted to the declarations of the routines.

The first routine-declaration begins with the line:
ROUTINE CTRL =

This line gives the name of the routine, CTRL. Because CTRL is not followed
by a parenthesized list of names, the routine is not called with parameters.
The purpose of the routine is to control program execution and to call other
routines.

The body of the routine CTRL is given after the comment that describes the
routine. It contains two declarations followed by three expressions. The decla-
rations do not cause actions directly; instead, they describe the names that
are used in the routine. The first declaration describes GETNUM and
PUTNUM as names of routines that are declared in another module. The
second declaration describes X and Y as the addresses of storage segments
that are used during execution of this routine.

The three expressions are:

GETNUM(X) 3
¥ = STEP(,X)3
PUTNUMC+Y)

The first two expressions are terminated (followed by a semicolon), the third
is not. These expressions specify separate actions, and are executed (or more
precisely, evaluated) one after another, in the order written. The first expres-
sion calls upon the routine GETNUM to read a number from the user’s
terminal and store it at address X. The second expression calls upon the
routine STEP to add 1 to the contents of X and then assigns the result to Y.
(The values of the first two expressions are discarded; thus these expressions
are used in a statement-like way, solely for their side effects.)

The third, non-terminated expression calls upon the routine PUTNUM to
print the contents of location Y at the user’s terminal, but also provide a value
for the routine as a whole. This is the value of the routine call, presumably a
completion code returned by PUTNUM. (One target operating system,
VAX/VMS, requires such a value to be returned by the main routine. In the
case of other target operating systems, the main-routine return value, if pro-
vided, is simply ignored.)

The second routine-declaration begins with the line:

ROUTINE STEP(A) =

This line gives the name of the routine STEP. It also gives a formal name, A,
that represents the parameter of the routine. Because there is no NOVALUE
attribute, this routine also returns a value.

Introduction

The body of the routine STEP is given after the comment that describes the
routine. It is a single line, as follows:

(A+1) 3§

This line specifies that when this routine is called, the value it returns is
calculated by adding 1 to the contents of formal location A, the value of the
parameter. Observe that the semicolon here is simply the terminator of the
routine declaration, and as such does not terminate the expression. It has no
effect upon whether or not the routine returns a value.

The expression that constitutes the routine body is enclosed in parentheses for
added clarity; the effect would be exactly the same without the parentheses in
this case. An equivalent way of expressing this routine declaration, which
shows more clearly the role of the semicolon, is the following:

ROUTINE STEP(A) =

I+
| This routine adds 1 to the diven value.
(-

BEGIN

A+

END §

Section 1.4.6 discusses the equivalence of the parenthesis pair and the
BEGIN-END pair as used in these examples.

Introduction 1-19

Chapter 2 Lexical Definitions and Syntax Notation

2.1 Characters and Linemarks 2-1
2.1.1 Characters e 2-2

2.1.2 Linemarks e e e 2-2

2.2 Lexemesand Spaces. i i i uu e e e e e e 2-2
221 Lexemes ittt e e e e e e e 2-3

2.2.2 Spacesand Comments 2-3
2.2.2.1 Guidelines on the Use of Comments. 2-4

2.3 The SeparationRules 2-4
24 The Syntax Notation. 2-5
24.1 SyntacticRules. 0L 2-5

2.4.2 Syntactic Names and Syntactic Literals 2-6

24.3 Concatenations. 2-6

24.4 Disjunctionso e e e e 2-7

245 Replications 0o 2-8

2.4.6 Dialectal Differences 0w e 2-8

Chapter 2
Lexical Definitions and Syntax Notation

This chapter defines lexemes (the basic syntactic elements of BLISS), and the
rules for the formation of valid BLISS source text. It also describes the syntax
notation used in later chapters to define the larger constructs of the BLISS
language.

The basic elements and rules defined here are the following:

® Characters and linemarks. Characters are the indivisible units of pro-
gram text. Linemarks serve to divide a character sequence into separate
“lines” of source text. Together they constitute the lowest-level elements
of syntactic structure.

® Lexemes and spaces. The lexemes of BLISS are analogous to the words
and punctuation marks of ordinary English text. The spaces are used to
separate lexemes where necessary and, optionally, to arrange the program
text in a clear and attractive way. Together they constitute the next
higher level of syntactic structure.

Note that a comment in BLISS is simply a special form of a space from
the lexical viewpoint.

® The separation rules, which govern the mandatory and optional use of
spaces to separate lexemes.

The syntax notation, described in the last section of this chapter, is used to
formulate the syntactic rules that define the many constructs of the BLISS
language. Each such construct consists of one or more lexemes. Thus these
higher-level syntactic rules fundamentally depend upon the separation rules
for their formal interpretation, although the separations required and allowed
by the syntactic rules are usually intuitively obvious without recourse to the
separation rules.

2.1 Characters and Linemarks

At the lowest level of syntactic structure a BLISS module consists of a se-
quence of characters and linemarks. They are the smallest recognizable ele-
ments of the source text.

2-1

2.1.1 Characters

The characters that can appear in a module are listed and classified in the
following table:,

Characters
Printing Characters
Letters: ABC..Zabc..z
Digits: 012..9
Delimiters: o F =50 ()01 <>
Special Characters: $ _ %! "
Free Characters: "4 &?2@ \ {1} T

Nonprinting Characters: blank tab vertical-tab form-feed

All of the characters in this table are members of the ASCII character set.
However, the table does not include all of the ASCII characters. Specifically,
30 of the 34 nonprinting ASCII characters do not appear in the table and must
not be used in a BLISS module.

Note that this table shows which characters can be used in a BLISS program,
and does not impose a restriction on data. BLISS data can use any ASCII
characters. (The characters that cannot be represented literally in the pro-
gram text can, however, be entered indirectly, using numeric codes, via the
%CHAR lexical-function described in Chapter 15.)

2.1.2 Linemarks

The linemark is the separation between the end of one source line and the
beginning of the next in a program-text file. On most terminals, it is entered
into the program text by pushing the RETURN, CARRIAGE RETURN, or
NEWLINE key.

The linemark is represented in different ways in different target systems. On
the PDP-11 and VAX-11 systems, where a text file is a sequence of records,
the linemark is represented by the division between two successive records.
On the DECsystem-10 and DECSYSTEM-20, where a text file is a single
character string, the linemark is represented by a line-feed, vertical-tab, or
form-feed character; if any of these characters is immediately preceded by a
carriage-return character, then that character is also part of the linemark.

2.2 Lexemes and Spaces

2-2

At the next higher level of syntactic structure a BLISS module consists of a
sequence of lexemes and spaces. A lexeme is the smallest meaningful unit of
the source text. Spaces are used to separate certain kinds of lexemes according
to the separation rules, and are optionally used to separate other lexemes for

Lexical Definitions and Syntax Notation

greater readability and general formatting purposes. The division of a module
into lexemes and spaces is especially important for the interpretation of
macros, as described in Chapter 15.

2.2.1 Lexemes

The various types of lexemes that can appear in a module are listed and
classified in the following table, with examples for each type except delimiters
(single characters that are completely enumerated):

Lexemes
Keywords: ROUTINE %ASCIZ AND
Names
Predeclared: =~ VECTOR MAX

Explicitly Declared: X BETA26 INITIAL__SIZE

Decimal Literals: 0 23000
Quoted Strings: "ABC” “He said, ""Go!""" "77700"
Delimiters

Operators: R

Punctuation Marks: , ; : () [1 < >

A delimiter serves either as an operator or as a punctuation mark. These
lexemes are called delimiters because they never “run into” a neighboring
lexeme. For example, the delimiter “+”’ can be used to form the expression
“ALPHA+1” (consisting of three lexemes) without using blanks. But an at-
tempt to use the keyword “AND’’ without adjacent blanks results in “ALP-
HAAND1”, interpreted as a single lexeme.

2.2.2 Spaces and Comments

When two lexemes would otherwise ‘“run together” to make a single lexeme,
they must be separated by a space. A description of spaces is given in the
following table:

Spaces

Linemark

Comments

Trailing Comment::

Nonprinting Characters:

Embedded Comment:

blank tab vertical-tab form-feed

! This is a program for entomologists.

%(Insert new routine here)%

Lexical Definitions and Syntax Notation

2-3

The preceding table describes spaces informally, using two examples for the
comments. A more precise definition is:

1. A space is a linemark, a nonprinting character (as listed in the table) or
a comment.

2. A comment is a trailing comment or an embedded comment.

3. A trailing comment is an exclamation character followed by the remain-
der of the line on which the comment begins.

4. An embedded comment begins with the two characters “%(”, followed
by the text of the comment, followed by the two characters “)%”. The
text must not contain the sequence ‘)%, since that would prematurely
end the comment; see guidelines below. An embedded comment can
begin after any lexeme of a module and can extend to any later position
in the module. However, an embedded comment must end in the same
source file in which it began.

When a module is written by the programmer, spaces are commonly used to
arrange the module-in a clear and attractive format and to insert comments
on the workings of the program. However, when a module is translated by the
compiler, the only role of spaces is to separate the lexemes of the module.
From the point of view of the compiler, for example, a lengthy comment is
equivalent to a single blank character.

2.2.2.1 Guidelines on the Use of Comments — A trailing comment, beginning
with the “!” character anywhere in a source line, is terminated by the next
linemark, i.e., by the ‘end of the line’ in which it occurs. Thus it is a generally
safe and unambiguous form of commment and can be used, for example, to
“comment out” any line of source text whatever its content.

An embedded comment, beginning with the character sequence “%(”, is ter-
minated by the very next occurence of the sequence “)%”. This means that
the embedded comment cannot be nested. Also, the sequence “)%” is a valid
though ill-advised form of ending of a macro definition (see Section 15.2).
Thus an extensive embedded comment could be inadvertently terminated by
the occurence of “)%” in a macro declaration where the “%’’ character was
intended to terminate a macro definition. For these reasons the embedded
comment should be used with care. Also, its use to “comment out” a body of
code is discouraged.

2.3 The Separation Rules

2-4

The use of spaces between the lexe.nes of a module is governed by the separa-
tion rules. The rules are:

1. One or more spaces must appear between two lexemes if each lexeme is
any one of the following:

¢ A name,
e A keyword, or

e A decimal-literal.

Lexical Definitions and Syntax Notation

This rule requires the use of spaces wherever two lexemes would other-
wise merge to form a single, longer lexeme.

2. One or more spaces may appear between any two lexemes. This rule
permits the use of spaces to control format and provide comments.

3. A épace must not be inserted into a lexenie. This rule prevents a lexeme
from being broken into two lexemes. Some apparent exceptions arise in
the case of a quoted-string lexeme, as described in Sections 4.3.2.

2.4 The Syntax Notation

The syntax of BLISS is a collection of syntactic rules that describe the con-
struction of a module (the unit of compilation). The special notation used for
the syntactic rules is defined in this section.

Each syntactic rule defines a syntactic name. The syntactic rules are interde-
pendent, that is, many of the rules define a syntactic name in terms of other
syntactic names. However, the rules do not form a vicious circle of definitions
because some of the rules define syntactic names directly in terms of syntactic
literals, i.e., without reference to other syntactic names.

The ultimate syntactic name is module, which is defined in the syntactic rules
given in Chapter 19. The description of the language begins with the defini-
tion of the syntactic name expression, in Chapter 4.

2.4.1 Syntactic Rules

A syntactic rule is divided into two parts by a vertical line. To the left of the
line is the syntactic name that is defined by the rule; to the right, a string
definition. In the simplest rules, the string definition is a single character or a
single syntactic name.

In more complicated rules, string definitions are combined to make larger
string definitions as follows: by concatenation (the joining of strings), by
disjunction (the choice between two strings), or by iteration (the joining of
several copies of a string).

An example of the simplest possible kind of rule is:

dollar $

In English, this rule reads: ‘The syntactic name dollar designates the single
character “$”.” Note that the character “$” is a syntactic literal, as defined in
the following section; thus this rule completely defines the syntactic name
dollar, without reference to any other rules.

Lexical Definitions and Syntax Notation 2-5

2-6

Sometimes it is useful to give the same definition for several syntactic names.
In such a case, the several names are written one above another and are joined
by a brace.

position } expression

size

In English, this rule reads: ‘The syntactic names position and size each desig-
nate an expression.’

2.4.2 Syntactic Names and Syntactic Literals

A syntactic name is one or more English words composed of lower case letters
and connected by hyphens. Four examples of syntactic names are given in the
two syntactic rules above, namely: dollar, position, size, and expression.

Further examples of syntactic names are:

module

own-item
forward-routine-declaration
compile-time-constant-expression

Every syntactic name has at least two characters.

A syntactic literal is a printing character that is interpreted as itself when it
occurs in a string definition. All printing characters are syntactic literals
except:

1. A character that is part of a syntactic name.
2. A brace character, { or }, or a vertical bar, I.

3. A period or comma that is part of the sequence “...”” or the sequence
In practice, it is easy to distinguish a syntactic name from a syntactic literal
because syntactic names are always in lower case and BLISS keywords appear

in this manual (by convention) in upper case.

2.4.3 Concatenations

A concatenation is a string definition composed of a sequence of two or more
string definitions. If the definitions are adjacent (without intervening spaces),
then the strings they define must also be adjacent. If the definitions are
separated (by spaces), then the strings they define may or may not require
separation, depending on the separation rules given in Section 2.3.

An example of a syntactic rule that uses adjacent concatenations is:

volatile-attribute VOLATILE

Lexical Definitions and Syntax Notation

In English, this rule reads: ‘The syntactic name volatile-attribute designates
the following string: the keyword “VOLATILE”.” Because the eight letters
“VOLATILE” (each one a syntactic literal) are adjacent in the rule, they
must also be adjacent in the program.

An example of a rule that uses both adjacent and separated concatenations is:

exitloop-expression| EXITLOOP exit-value

In English, this rule reads: ‘The syntactic name exitloop-expression desig-
nates the following string: the keyword “EXITLOOP”, followed by an exit-
value.’ ‘

In the English reading of any syntactic rule, the phrase “followed by’ is an
abbreviation for “followed by the spaces (if any) that are required by the
separation rules, followed by”.

2.4.4 Disjunctions

A disjunction is a string definition that permits a choice of one string defini-
tion from a set of several string definitions. The set of definitions is enclosed in
braces. Each definition is separated from the preceding one by being on a new
line or by a vertical-bar character.

An example of a disjunction in which each choice is written on a separate line
is:

single-value

low-value TO high-value
INRANGE

OUTRANGE

case-label

In English, this reads: ‘The syntactic name case-label designates one of the
following strings: (1) a single-value, (2) a low-value followed by the keyword
“TO” followed by a high-value, (3) the keyword “INRANGE”, (4) the key-
word “OUTRANGE”.’

An example of a disjunction in which the choices are separated by verticai-bar
characters is:

octal-digit for1121—-—117}

In English, this reads: ‘The syntactic name octal-digit designates one of the
following characters: <0, “1”, “2”, and so on to “7”’.” Observe that once the
set of choices is clearly implied, the ellipsis symbol “——"" is used to indicate
other choices. In some disjunctions, one of the choices may be the omission of
a construct; in such a case, the word “nothing” is included in the braces.

Lexical Definitions and Syntax Notation 2-7

2-8

An example of a disjunction that uses the word “nothing” as one of the
choices is:

leave-expression LEAVE label { WITH exit-value }

nothing

2.4.5 Replications

A replication is a string definition that represents a sequence of one or more
copies of a given string definition. The replication is indicated by writing the
symbol “...”” after the given definition. The separation between the defined
strings is determined by the separation rules, just as for concatenation.

An example of a replication is:

own-time own-name { : own-attribute }

nothing

In English, this rule reads: ‘The syntactic name own-item designates the
following string: an own-name followed by an optional own-attribute-list. An
own-attribute-list is a colon followed by a sequence of one or more own-
attributes.” (The extra syntactic name, own-attribute-list, is introduced only
for the sake of the English reading.)

A special kind of replication is indicated by writing the symbol “,...”" after the
definition. The symbol means that each copy of the given definition is sepa-
rated from the preceding one by a comma.

An example of a replication that uses the symbol “,...” is:
routine-call routine-designator ({ actugl ’}
nothing

In English, the rule reads: ‘The syntactic name routine-call designates the
following string: a routine-designator, followed by the character “(”, followed
by an optional actual-list, followed by the character ““)”’. An actual-list is a
sequence of actuals that are separated from one another by commas.’ (The
extra syntactic name, actual-list, is introduced only for the sake of the English
reading.)

(13

Note that in either case (““...”” or “,...”"), the optional replication applies only
to the string definition that immediately precedes the replication symbol.

2.4.6 Dialectal Differences

Some of the syntactic rules given in this manual apply to only one or two of
the three BLISS dialects. That is, some of the rules are not part of Common

Lexical Definitions and Syntax Notation

BLISS. Further, certain of the string definitions given within some rules are
dialect specific.

These dialect-specific features are indicated in the syntax diagrams by ‘flags’
of the form

nn Only => or mm/nn Only =>
preceding a rule (or group of rules) for the former case; or a flag of the form
<=nn Only or <= mm/nn

following a string definition for the latter case. In each case, mm and nn
identify the dialect(s) to which the syntactic feature applies, i.e., 16, 32, or 36.

An example of an entire syntactic rule that is dialect-specific is:

16/32 Only =>

extension-attribute

{ SIGNED }
UNSIGNED

In English, the dialect flag means: ‘The following syntactic rule applies to the
BLISS-16 and BLISS-32 dialects only.’

An example of both a syntactic rule and a string definition within the rule
that are dialect-specific is:

16/32 Only =>

WORD
BYTE

allocation-unit

{ LONG } <= 32 Only

In English, the left-pointing dialect flag “<= 32 Only” means: ‘The string
definition LONG is valid only in BLISS-32 as an alternative within the rule
for allocation-unit (which itself applies only to the BLISS-16 and BLISS-32
dialects).’

Lexical Definitions and Syntax Notation 2-9

Chapter 3 BLISS Values and Data Representations

3.1

3.2

3.3

3.4

BLISS Values e 3-1
3.1.1 Fullword Values 3-2
312 FieldValues e 3-4
3.1.3 The Extension of Values 3-4
Data Segments 3-5
3.2.1 Addressable Units and Units per BLISS Value. 3-6
3.2.2 Scalars. L e e 3-7
3.2.3 VECTOR Structures v v v v ... 3-8
3.24 BITVECTOR Structures 3-10
3.25 BLOCK Structures v v v v v v v v v v 3-10
3.2.6 BLOCKVECTOR Structures 3-11
3.27 Programmed Structures. 3-12
Character Sequence Data. 3-12
3.3.1 General Character Representation 3-13
3.3.2 Character Sequence Operations 3-14
3.3.3 BLISS-16 Character Representation 3-14
3.3.4 BLISS-32 Character Representation P, 3-15
3.3.5 BLISS-36 Character Representation 3-15
Storage Organization. 3-16
341 TheStack e 3-16
342 TheRegisters. 3-17

3.4.3 Storage for a Program Module. 3-17

Chapter 3
BLISS Values and Data Representations

The range of data values permitted and the kinds of data representations
available are important characteristics of a programming language. Because
the BLISS language is a systems implementation language, its value and data
representations are closely related to those directly provided or efficiently
handled by the machine architecture of each target system.

This chapter describes the values and data representations provided by each
BLISS compiler/dialect. Because the three BLISS target systems (or system
families) have substantially different architectures — word sizes, addressable
units, character string representations, etc. — certain portions of this chapter
are, necessarily, quite system specific.

3.1 BLISS Values

BLISS provides a variety of written (source program) representations for val-
ues (binary, octal, hexadecimal, and so on). These are described in Chapter 4.
The normal representation is decimal; that is, any number in a BLISS pro-
gram and in this manual, is interpreted as decimal notation unless otherwise
indicated.

The values on which the object program operates, however, are represented as
bit strings. The maximume-length bit string that is efficiently accessable by a
given target system (i.e., a “word” or “longword” depending on the system) is
called a fullword in BLISS terminology. The length of a fullword, in bits, for
each target system is indicated by the numeric portion of the name of the
respective dialect: 16, 32, or 36.

A bit string that is shorter than a fullword is called a field value. Several field
value sizes are of particular importance in BLISS, depending upon the dialect
in question:

e For All Dialects — The bit, which is the smallest unit of storage.

¢ For BLISS-16 — The byte (8 bits), which is the basic addressable unit in
PDP-11 and VAX-11 systems.

3-2

e For BLISS-32 — The byte, as above, and the word (16 bits), which is the
‘intermediate size’ addressable unit in VAX-11 systems.

Fullword values and field values play contrasting roles in BLISS. Fullword
values are used as the basis for all calculations. Fields are used to achieve
compact storage for values that do not require the maximum-length bit string
for their representation. The two kinds of values are discussed separately in
the following sections.

3.1.1 Fullword Values

The fullword value (formerly called “a BLISS value”) is the fundamental
data type of BLISS. Specifically, the result of evaluating any BLISS expres-
sion is a fullword value.

In some cases, a fullword value can be viewed as a bit string without a specific
interpretation, as when a value is moved from one storage location to another
without modification. In other contexts, the bits of a fullword value are given
a specific interpretation. A fullword value can be interpreted as:

¢ A signed integer, represented in two’s complement notation.
* An unsigned integer.

¢ A sequence of character positions, each of which contains a code for an
ASCII character.

¢ A sequence of logical values, each of which represents ‘“true” or ““false”.
* A memory address.

Other interpretations for a fullword value can be devised, but these are the
interpretations that are built into the operations of BLISS.

The length of a fullword, in bits, is given in each BLISS dialect by the
predeclared literal %BPVAL (bits per value), i.e., 16, 32, or 36 for BLISS-16,
BLISS-32 and BLISS-36, respectively. Using this literal, the range of a full-
word value for each of the interpretations listed above can be expressed for all
dialects as follows:
e Signed integer, i:
~(2Z**UBPVYAL-1) < i < (Z2**%BPVAL-1)-1
In BLISS-16, for instance: -(2#¥15) < i < (2%%15)-1
* Unsigned integer, i:
0 < i < (2¥%UBPVAL)-1
e ASCII character positions:

2 in BLISS-16
4 in BLISS-32
5 in BLISS-36

BLISS Values and Data Representations

¢ Sequence of logical (boolean) values:
YBRVAL

¢ Memory address:
Full address space of each target system
A fundamental rule of BLISS is the following:

The interpretation of a fullword value is supplied by the context in which
the fullword value is used. A given fullword value can have one interpreta-
tion in one context and a different interpretation in another context.

In this respect, the BLISS language is similar to machine language and is
different from most high level languages. Both BLISS and the target-system
hardware interpret a value according to the operation applied to it. In con-
trast, most high level languages associate a specific interpretation (or “type”)
with each value, independent of its context.

The BLISS rule for interpreting fullword values allows programmers to stay
close to the hardware and, accordingly, to write more efficient programs. At
the same time, however, this rule permits programming errors to arise as a
result of the misinterpretation of values.

As a basis for an example of the interpretation of a fullword value, consider
the following assignment:

K= -1

This assignment sets the contents of X to the two’s complement representa-
tion of minus one; that is, a sequence of %BPVAL ones. The two expressions
that follow interpret the contents of X in different ways:

+X LSS 4
X LESU 4

Both of these expressions use a less-than operator to compare the contents of
X to 4. They yield 1 or 0 depending on whether or not the contents of X is less
than 4. However, according to the definitions given in Chapter 5, the opera-
tors interpret their operands in different ways, as follows:

* The LSS operator interprets its operands as signed integer values. It finds
that the contents of X is -1 and is therefore less than 4. Accordingly, the
value of the expression is 1.

e The LSSU operator interprets its operands as unsigned integer values. It
finds that the contents of X is a large positive integer (namely,
(2**%BPVAL)-1) and is therefore not less than 4. Accordingly, the value
of the expression is 0.

Since the negative number was assigned to X, it might be assumed that the
user of the LSSU operator is incorrect. In fact, however, both expressions are
valid. The question of which is correct depends entirely on the intentions of
the programmer.

BLISS Values and Data Representations 3-3

3-4

3.1.2 Field Values

According to the definition already given, a field value is a bit string that is
shorter than a fullword. Field values arise in two ways, as follows:

¢ Some stored values are ‘“packed” and occupy only part of a fullword.

¢ Some BLISS operators and literals have values that can be represented in
less than %BPVAL bits.

Whenever a field value arises during program execution, it is extended to
become a fullword and then the appropriate interpretation is applied to the
fullword. The rules for the extension of values follow.

3.1.3 The Extension of Values

A field value is extended to a fullword value by placing a sufficient number of
bits at the left end of the given value to provide a total of %BPVAL bits.

The following discussion of value extension is largely oriented toward
BLISS-16 and BLISS-32, since the target systems for these two dialects allow
allocation of scalar data segments in smaller-than-fullword units. Hence these
dialects have an allocation-unit and an extension-attribute that can be used
in data declarations. As will be seen in Chapters 5 and 11, however, these
syntactic features are closely related to field-selectors, which are common to
all three dialects. To the extent, then, that field values can arise in BLISS-36
as well as in BLISS-16 and BLISS-32, the following discussion is equally
applicable to all dialects.

A value can be extended in two ways, as follows:
e Unsigned extension uses a zero bit for each additional bit.

¢ Signed extension uses a copy of the sign bit (leftmost bit) of the given
value for each additional bit.

The kind of extension is determined in either of two ways. First, in
BLISS-16/32, an extension-attribute (UNSIGNED or SIGNED) can be in-
cluded in the declaration of a data segment name (see Section 9.2). Second, a
sign-extension-flag can be used in a field-selector (see Section 11.2). When the
kind of extension is not explicitly given by an extension-attribute or a sign-
extension-flag, unsigned extension is assumed as the default.

BLISS-16/32 ONLY

As the basis for some examples of value extension, consider the following
declaration which is valid in BLISS-16 or BLISS-32:

OWN
%: BYTE SIGNED
¥: BYTES
Suppose the contents of both X and Y are:
11111111 (binary)

The declaration of X as SIGNED implies that this value is -1; that is, the
two’s complement interpretation of the given bit string. On the other hand,

BLISS Values and Data Representations

the declaration of Y as UNSIGNED (by default, since no extension-attrib-
ute is given) implies that its contents is 255; that is, the unsigned interpre-
tation of the given bit string.

(These declarations are invalid for BLISS-36 simply because the target-
system architecture does not permit storage allocation in units of less than
%BPVAL bits, i.e., less than a 36-bit machine word. Fetching and storing of
field values can be performed, however, through the use of explicit field-
selectors, as illustrated in a later example.)

The sign interpretations come into play when the contents of X and Y are
fetched. The evaluation of .X uses signed extension to produce the following
bit string:

11111...1111111111 (binary)
which is the two’s complement representation of -1 represented in 16 bits

for BLISS-16 or 32 bits for BLISS-32. In contrast, the evaluation of .Y uses
unsigned extension to produce the following bit string:

00000...0011111111 (binary)
which is the unsigned representation of 255. Therefore, the two results are
different, and the expression

WX OEQL LY

would be false (that is, the low bit would have the value 0).

In BLISS-36 as well as BLISS-16 and BLISS-32, identical results would be
obtained using the following, analogous set of declarations and fetch opera-
tions:

OWN
Wy
v
declares X and Y as the names of fullword, scalar data segments. Assume that
the low-order eight bits of both these fullwords are one-bits. Then the fetch
operation

WK 0,801

specifies a fetch of the low-order eight bits of location X with signed exten-
sion, upon evaluation produces the value -1, as in the example above, repre-
sented in %BPVAL bits. In contrast, the fetch operation

WYL sB0x

specifies a fetch of the low-order eight bits of location Y with unsigned exten-
sion, which produces the value 255 in %BPVAL bits.

3.2 Data Segments

During the execution of a BLISS program, values are stored in data segments.
A data segment consists of one or more addressable units of memory. In its
simplest form, a data segment contains a single value. In its more complicated
forms, a data segment can contain many values of various lengths.

BLISS Values and Data Representations 3-5

3-6

The different kinds of data segments can be classified as follows:

Data Segments
Scalars
Structures
Predeclared Structures
VECTOR Structures
BITVECTOR Structures
BLOCK Structures
BLOCKVECTOR Structures
Programmed Structures

A scalar segment contains a single value, whereas a structure may contain any
number of values. Each predeclared structure is a part of the definition of
BLISS, and it is invoked by using one of the predeclared structure names
(VECTOR, BITVECTOR, BLOCK, or BLOCKVECTOR) in the declaration
of a data segment. A programmed structure is defined by the programmer and
can be used to organize the contents of a data segment in any way.

3.2.1 Addressable Units and Units per BLISS Value

The three target-system families supported by BLISS differ in four respects
having to do with their storage organization that affect the source-language
syntax and semantics to some degree. These differences are as follows:

1. Maximum (or only) “word” size, already described as the BLISS full-
word consisting of %BPVAL bits.

2. Smallest directly addressable unit of storage.
3. Number of addressable units per BLISS value (i.e., per fullword).
4. Size of an address value.

The size of the smallest addressable unit, in bits, is given by the predeclared
literal %BPUNIT (bits per unit.) Its value is 8 for both BLISS-16 and
BLISS-32 — byte oriented target systems; and 36 for BLISS-36 — a word
oriented target system.

The number of addressable units per BLISS value is the quotient of %BPVAL
over %BPUNIT. This value is given by the predeclared literal %UPVAL
(units per value). Its value is 2 for BLISS-16 (two bytes per PDP-11 word), 4
for BLISS-32 (four bytes per VAX-11 longword), and 1 for BLISS-36.

The final difference is the number of bits required for a maximum address
value, given by the predeclared literal %BPADDR. Its value is 16 for
BLISS-16, 32 for BLISS-32, and 18 or 30 for BLISS-36, depending on the
setting of the EXTEND module-switch. (This value is usually less significant
than the others, as its utility is limited to certain kinds of operations on
addresses that are not commonly required.)

The literals just described are used in the subsequent discussions of data-
segment types.

BLISS Values and Data Representations

3.2.2 Scalars

In BLISS-16 and BLISS-32, the storage occupied by a scalar segment de-
pends on the allocation-unit that is associated with the segment. The alloca-
tion-unit is given in the declaration of the name of the segment and is one of
the following keywords:

LONG (for 32 bits) <= BLISS-32 only
WORD (for 16 bits) <= BLISS-16/32 only
BYTE (for 8 bits) <= BLISS-16/32 only

When no allocation-unit is given, WORD is assumed in BLISS-16 and LONG
is assumed in BLISS-32. In BLISS-36, only fullword scalar segments can be
allocated.

The kind of extension used when the value of a data segment is fetched
depends on the extension-attribute (BLISS-16/32 only) that is associated with
the segment or the field-selector associated with the fetch operation. The
extension-attribute is one of the following keywords:

UNSIGNED (for unsigned extension)
SIGNED (for signed extension)

When no extension-attribute or field-selector is given, unsigned extension is
assumed.

The extension-attribute does not affect the amount of storage used for a data
segment. Its only effect is on the way the value is extended to %BPVAL bits
when it is fetched. It is valid to give an extension-attribute with a fullword
data segment, but the attribute has no effect since the value is already
%BPVAL bits long.

An example of the declaration of a scalar segment is:
OWN X3

This declaration describes a segment that is allocated permanently before
execution begins (because it is OWN), that is named X, that is a scalar
(because no structure-attribute is given), that occupies a fullword (because no
allocation-unit is given), and that uses unsigned extension (because no exten-
sion-attribute is given).

The features of a data segment can be illustrated in a diagram. In the follow-
ing, the declaration of X is given together with the diagram for the corre-
sponding data segment:

Declaration Diagram

OWN X3 2360 X /16 / (%BPVAL)

This diagram represents a data segment in a simple and abstract way; that is,
it does not show the specific layout of the data in terms of the byte boundaries
(where applicable), bit sequences, and addresses of storage. A more detailed
notation is introduced in Chapter 11.

BLISS Values and Data Representations 3-7

3-8

The diagram represents the data segment as follows:

1. The address of the data segment is given in two forms. The first form is
an (arbitrarily chosen) integer, 2360, used by the hardware to locate the
segment. The second form is the name, X, that is used by the program
to designate the segment.

2. The storage is represented by a box followed by a parenthesized expres-
sion. The expression shows how many bits of storage the box represents.

3. The contents of the data segment is given as a literal, 15, written inside
the box. It is this part of the diagram that changes as program execution
proceeds.

In this example, the value of X is 2360 (the address of the data segment),
whereas the value of .X is 15 (the contents of the data segment).

BLISS-16/32 ONLY

The preceding example describes a scalar that occupies a fullword. Exam-
ples of scalars that, in BLISS-16 or BLISS-32, occupy a word and a byte
are:

Declaration Diagram
OWN Y: WORD 3 1000 Y (16)
OWN Z: BYTE 3 2440 Z (8)

In these examples, each data segment has the UNSIGNED extension-at-
tribute by default. Thus the values fetched from Y are in the range from 0
to (2**16)-1 and the values fetched from Z are in the range from 0 to
(2**8)-1.

An example of a scalar that has the SIGNED extension-attribute is:

Declaration Diagram

OWN R: SIGNED BYTE $ 3002R/_-5__] (8)

The values fetched from R range from —(2**7) through (2**7)-1. Thus al-
though R and Z (in the preceding paragraph) both occupy eight bits of
storage, their values are interpreted differently when they are fetched.

For the purposes of the following discussions, in BLISS-36 scalar data-seg-
ment declarations can be thought of as having an implicit allocation-unit of
%UPVAL value (i.e., one addressable unit per segment), and an implicit
UNSIGNED extension attribute.

3.2.3 VECTOR Structures

A vector structure is a sequence of scalar elements. The number of elements is
the extent of the vector, and is given as part of the declaration of the segment
name. The elements are numbered, with 0 for the first element, 1 for the
second, and so on.

Each element of a vector has the same allocation-unit and extension-attrib-
ute. This information can be given as part of the declaration of the vector. If

BLISS Values and Data Representations

the allocation-unit is not given, the default is the same as for scalar segments
(fullword allocation). If the extension-attribute is not given, unsigned exten-
sion is assumed (where applicable).

An example of a vector is:
Declaration Diagram
OWN A: VECTORL313 5440 A[0] [28] (%BPVAL)
Al (%BPVAL)
A2 [133/ (%BPVAL)

This declaration describes a segment that starts at address 5440 and is named
A. The declaration gives the extent of the vector as 3 and so the vector has
three elements. The declaration does not give an allocation-unit, so each
element occupies a fullword.

A particular element is selected by a bracketed subscript expression. Suppose
that the contents of a data segment named IND is 3, and consider the contrast
between the following expressions:

Expression Value
AT, IND-21 5440+ %UPVAL (the address of the second element)

JALLIND-21 5 (the contents of the second element)

BLISS-16/32 ONLY

An example of a declaration that gives both allocation-unit and extension-
attribute is:

Declaration Diagram

OWN B: VECTORL3 +WORD +SIGNEDI 3 46046 B0} [15 7 (16)
B/ _3 7 (16
BI2] (16)

This declaration describes a segment that starts at address 46046 and is
named B. It is similar to the segment named A, described in the preceding
paragraph. However, the allocation-unit is given explicitly as WORD, and
therefore each element of the vector occupies 16 bits. It follows that the
vector occupies only six bytes of memory. Furthermore, the extension-at-
tribute is given explicitly as SIGNED, and therefore, the fetched contents
of an element of B is subject to signed extension.

An example of a vector of bytes is:

Declaration Diagram

OWN C: VECTORLABYTETS 221 CI0] (8)
cul_T7 7 (8
cail 2 7 (8
ceil_4 7 (8

BLISS Values and Data Representations 3-9

3-10

This data segment is a vector of four elements and occupies four bytes of
memory. Since an extention-attribute is not given, UNSIGNED is assumed
by default.

3.2.4 BITVECTOR Structures

A bitvector structure is similar to a vector structure. However, bitvector struc-
tures are designed especially to handle bit strings, and each element of a
bitvector structure is a single bit.

An example of a bitvector structure is:
Declaration Diagram
OWN STATUS: BITVECTORC1S1; 1604 STATUSIO] /_ 1 7 (1)
STATUSH L1 7 (1)

... (and so on, until)

STATUSI4] /0 7 (1)
(not used) [[TTT77 (n)

This declaration describes a segment that has 15 elements and thus makes use
of 15 bits of memory. The number of unused bits, n, in the data segment
allocated for this structure would be one in BLISS-16 and BLISS-32 (byte
allocation), and 21 in BLISS-36.

A bitvector starts at the low-order (rightmost) bit of its first addressable unit
of storage. Thus in BLISS-16 or BLISS-32, STATUSIO] designates the low-
order bit of the byte whose address is 1604, STATUS[7] designates the high-
order bit of that byte, STATUSI8] designates the low-order bit of byte 1605,
and so on.

In BLISS-36, where the structure is entirely contained in one word, the refer-
ences STATUSIO0] and STATUSI8] designate the low-order bit and the ninth
bit “from the right”, respectively, of word 1604. (Note that bit-position
numbering in BLISS is consistent across dialects: bit numbers increase from
low order to high order, “right to left”, regardless of the target-system hard-
ware convention.)

Neither an allocation-unit nor an extension-attribute can be used with
BITVECTOR. (The number of addressable units allocated is the smallest
number of units that can accomodate the given number of bits.) When the
contents of an element of a bit vector is fetched, unsigned extension is always
used.

3.2.5 BLOCK Structures

A block structure is a sequence of components. The block as a whole has a
name, which is declared using the BLOCK structure-attribute. In addition,
each component of a block has its own name.

BLISS Values and Data Representations

A block is declared with a size and, in BLISS-16 and BLISS-32, an alloca-
tion-unit. The size specifies the amount of storage required for the entire
block. The allocation-unit determines the units in which the size is measured.
The default allocation-unit is the same as for a scalar segment declaration
(fullword allocation).

The individual components of a block can have different sizes. The way in
which the size of each component is specified is given in Chapter 11. For
purposes of the present discussion, it is sufficient to state that the size is
determined when the program is written and cannot change during program
execution.

Observe that a block differs from a vector in two ways. A block is less flexible
than a vector because, in normal usage, the name of a block component is
given explicitly when the program is written, whereas the subscript of a vector
element can be calculated during program execution. On the other hand, a
block is more flexible than a vector because the components of a block can
have various sizes, whereas the elements of a vector must all have the same
size.

An example of a BLOCK structure, using BLISS-32, is:
Declaration Diagram
OWN ITEM: BLOCKLITEMSIZE BYTE1; 33300 ITEMI[FLGI] [0 [(2
ITEMINT [235/ (14)
ITEMILOCI 17T/ (32)

This declaration describes a segment that starts at address 33300 and is
named ITEM. The declaration gives the size of the block as ITEMSIZE. The
~ diagram shows that the individual components are FLG (two bits), N1 (four-
teen bits), and LOC (32 bits). Since ITEMSIZE must be the total number of
bytes used, the diagram implies that the value of ITEMSIZE should be 6.

The address of a component of the block is written exactly as it appears in the
diagram. Consider the contrast between the following expressions:

Expression Value
ITEMLLOC] 33302 (the address of the third component)
L ITEMILOC] 17 (the contents of the third component)

3.2.6 BLOCKVECTOR Structures

A blockvector structure is a sequence of elements (as is a vector structure),
but each element consists of a block. The number of elements is the extent of
the blockvector, and is given as part of the declaration of the segment name.
The elements are numbered, with 0 for the first element, 1 for the second, and
SO on.

Each element of a blockvector is a sequence of components (as is a block).
Each component is a scalar and has its own name. Therefore, the combination

BLISS Values and Data Representations 3-11

of the blockvector name, the subscript of an element, and the name of a
component is used to designate a single value.

In addition to the extent, an element-size and, if BLISS-16 or BLISS-32, an
allocation-unit are given in the declaration of a blockvector. The element-size

ecifies the amount of storage for each element (i.e., the block size), and the
:{;ocation-unit determines the units in which the element-size is measured.
The default allocation-unit is the same as for a scalar segment (fullword
allocation). The storage required for a blockvector is the product of its extent
and its element-size.

An example of a BLOCKVECTOR structure, using BLISS-36, is:

Declaration Diagram

OWN ©: BLOCKVECTORLZ2,0813 6000 QI0,FLAG] [5 7 (8)
QIO,VAL] /[62/ (28)
QOPTR] L0/ (36)
QILFLAGI L__25_ / (8)
QI1,VAL) [78 / (28)
QILPTR] [__23 / (36)

The declaration of Q gives the extent as 2 and the element size as QS. Accord-
ing to the diagram, each element has three components, FLAG, VAL, and
PTR. Since QS must be the total number of fullwords used by each element,
the diagram implies that the value of QS should be 2.

Suppose that the contents of a data segment named I is 0, and consider the
contrast between the following expressions:

Expressions Value
GCL.,I+1,FLAG] 6002 (address of component)
LOL.I+1,FLAG] 25 (contents of component)

3.2.7 Programmed Structures

The predeclared structures discussed in the preceding sections provide the
data structures usually required for system programming. To provide for other
data structures, BLISS has a feature, the STRUCTURE declaration, that
permits a programmer to design and use his own data structures. This feature
of BLISS is described in Chapter 11 where, in addition, each predeclared
structure is defined in terms of a STRUCTURE declaration.

3.3 Character Sequence Data

3-12

The representation of character data differs among the three BLISS dialects
due to basic architectural differences. Character data is represented in a very
different way in BLISS-36 target systems than in BLISS-16 and BLISS-32
target systems. In spite of this difference, it is possible to think about charac-

BLISS Values and Data Representations

ter data in a single, uniform way that applies to all BLISS target systems and,
more importantly, to code BLISS programs that behave the same way and
give the same results on all BLISS systems, even though the results are
achieved in significantly different ways at object level.

The BLISS features for handling character data in this common (i.e., trans-
portable) way involve some new terminology and a set of special character-
handling functions; these features are described in detail in Chapter 20.

The representation of character data and, in particular, sequences of charac-
ters is described here in two ways. First, character sequences are described in
a general way that includes only the aspects that are common to all BLISS
target systems. Second, the representation of character sequences is described
specifically for each BLISS target system.

3.3.1 General Character Representation

Loosely speaking, a character sequence is like a vector of character data
elements. This analogy may be useful in understanding the following descrip-
tion of BLISS character sequences. (Fuller detail is given in Chapter 20.)

A character code is a sequence of bits that represents a character. Usually the
ASCII encoding of characters is used in BLISS.

A character position is the storage for a single character code. For a given
implementation of BLISS, the size of a character position is determined by
two factors: the requirements of the character code and the organization of
storage.

A character position sequence is a portion of storage that is used for one or
more character positions. Such a sequence has a first and last position. For
each position except the first, there is a previous position, and for each posi-
tion except the last, there is a next position.

A character data segment is a character position sequence that is allocated as
a single portion of storage. In the simpler applications of character handling,
it is possible to treat each character data segment as a separate unit, contain-
ing a complete character position sequence and allocated in the same way as
other data segments.

A character pointer is a value that designates a character position. Sometimes
a character pointer is set to the first character position of a sequence and
remains there, providing access to the entire sequence. In other cases, a char-
acter pointer is used to scan back and forth in a sequence, selecting one
position after another. A character pointer can be correctly interpreted only
by a character handling function. It occupies a fullword.

The length of a character position sequence is the number of character posi-
tions in the sequence. The length of a sequence is not included as part of the
sequence itself. In order to fully specify a character position sequence, both its
length and a pointer to its first position must be given. Typically, the parame-
ters of the character handling functions occur in pairs, a length followed by a
pointer.

BLISS Values and Data Representations 3-13

3-14

3.3.2 Character Sequence Operations

The basic operations of character handling are the allocation of storage, crea-
tion of a pointer, moving of a pointer, fetching or storing of a character code,
and the comparison of character sequences. All of these operations must be
performed by means of the specific character handling functions provided for
this purpose. For example, the contents of a character position must always
be fetched or stored by means of a character pointer that designates the
character position. In contrast, a character pointer can be fetched or stored
like any other fullword value (by means of the fetch-operator, “.”, or the

__ "N

assignment operator, “=

Returning to the analogy with a vector of character data elements, the follow-
ing correspondences can be established:

* A character code corresponds to the contents of an element of the vector.

* A character position corresponds to the storage for an element of the
vector.

® A character position sequence corresponds to a contiguous sequence of
elements of a vector (possibly but not necessarily the entire vector).

* A character data segment is the complete vector.

® A character pointer corresponds to the address of an element of the
vector.

The ways in which this analogy is inexact are:

* A character position need not correspond to an addressable unit of
storage.

* A character pointer is not simply an address value.

(These considerations apply specifically to BLISS-36 as will be seen below.)

3.3.3 BLISS-16 Character Representation

In BLISS-16 there are two character positions per fullword. Characters are
allocated in storage with the leftmost character of the source string in the low-
order (or “rightmost”) character position of the first or only fullword. Addi-
tional fullwords or bytes are allocated in ascending address order. For exam-
ple, the source character string ‘ABCDEFGH?’ would be allocated as follows:

Diagram

7000 /BA/ (16)
7002 /DC/ (16)
7004 /FE/ (16)
7006 /HG/ (16)

Note that the eight-character string ‘ABCDEFGH’ can only appear in the
context of a PLIT (a type of primary expression) since a string literal itself, as
a primary expression, cannot exceed the capacity of a fullword: two character
positions in BLISS-16. (See Chapter 4, “Primary Expressions”.)

BLISS Values and Data Representations

The BLISS-16 representation is related to the general BLISS representation
of character sequences as follows:

¢ A character code consists of 8 bits.
e A character position is a byte of storage.

e A character position sequence is a contiguous sequence of bytes of storage
with successive characters, considered from left to right, contained in
successive bytes from lower to higher addresses.

e A character data segment is also a contiguous sequence of bytes of stor-
age.

e A character pointer is the address of a byte.

3.3.4 BLISS-32 Character Representation

In BLISS-32 there are four character positions per fullword. Characters are
allocated in storage with the leftmost character of the source string in the
low-order (or “rightmost”) character position of the first or only fullword.
Additional fullwords or bytes are allocated in ascending address order. For
example, the source character string ‘ABCDEFGH’ would be allocated as
follows:

Diagram
36014 /DCBA/ (32)
36018 /HGFE/ (32)

Note that the eight-character string ‘ABCDEFGH’ can only appear in the
context of a PLIT (a type of primary expression) since a string literal itself, as
a primary expression, cannot exceed the capacity of a fullword: four character
positions in BLISS-32. (See Chapter 4, “Primary Expressions”.)

The BLISS-32 representation is related to the general BLISS representation
in the same way as in BLISS-16.

3.3.5 BLISS-36 Character Representation

In BLISS-36 there are five ASCII character positions per fullword or six
SIXBIT character positions. Characters are allocated in storage with the left-
most character of the source string in the high-order (or “leftmost”) character
position of the first or only fullword. Additional fullwords are allocated in
ascending address order. For example, the ASCII string ‘ABCDEFGH’ would
be allocated as follows:

Diagram
21005 /ABCDE/ (36)
21006 /FGH / (36)

Note that the eight-character string ‘ABCDEFGH’ can only appear in the
context of a PLIT (a type of primary expression) since a string literal itself, as
a primary expression, cannot exceed the capacity of a fullword: five character
positions in BLISS-36. (See Chapter 4, “Primary Expressions”.)

BLISS Values and Data Representations 3-15

The BLISS-36 representation is related to the general BLISS representation
of character sequences as follows:

¢ A character code consists of 7 bits.
® A character position is a 7-bit field of a 36-bit word of memory.

* A character position sequence is a contiguous sequence of character posi-
tions with successive character codes, considered from left to right, con-
tained in adjacent 7-bit fields beginning at any of the five character
positions in a word and continuing toward positions in the lower order
part of the word and then to the high order 7 bits of the next word, and
SO on.

* A character data segment is a contiguous sequence of 36-bit words.

* A character pointer is a special 36-bit value that consists of both address
and position and size information describing the character position.

(In DECsystem-10 terminology, a character pointer is a byte pointer
that, when used as the operand of an ILDB (increment and load byte)
instruction, will fetch the character code value from the indicated charac-
ter position.)

3.4 Storage Organization

3-16

During the execution of a BLISS-compiled object program, storage consists of
the following:

Storage
Storage for the given program
The Stack
The Registers
Storage for the First Module
Storage for the Second Module

Storage for the Last Module
Other Storage

The other storage includes the routines and data of the operating system, the
run-time routines for BLISS, and the storage for programs other than the
given program.

The stack, the registers, and the storage for each module are described in the
following sections.

3.4.1 The Stack

The stack is used to store temporary data associated with the execution of the
routines in a BLISS program. The stack is composed of frames. Upon entry to
a routine, a frame is pushed on the stack for use in executing that routine.
Upon return from the routine, the frame is popped from the stack.

BLISS Values and Data Representations

A stack frame contains data segments of two kinds. Some of the data seg-
ments are declared as LOCAL or STACKLOCAL. Such segments are directly
accessible from the program and are used for values that are needed only
during the execution of the routine in which they are declared. The other data
segments are allocated by the compiler and are not accessible from the pro-
gram. These segments are used for such values as the return address of the
routine or the intermediate results that are produced during the evaluation of
an expression.

The declaration of LOCAL and STACKLOCAL names is described in Chap-
ter 10. The relation between a routine and the stack is further described in
Chapter 12.

3.4.2 The Registers

The registers of BLISS correspond to the general registers of the target-system
hardware. Each register contains one fullword value. Each of the registers is
considered to be a single data segment.

The use of registers is normally determined by the compiler, not the program.
Access to a register uses less time than access to ordinary storage; therefore,
registers are often used to store the intermediate results and addressing in-
dices of a calculation. Under special circumstances, registers can be accessed
by the program.

The declaration of register names is described in Section 10.7.

3.4.3 Storage for a Program Module

A module uses four kinds of program sections. Each kind of program section
has a special purpose, as follows:

e An OWN program section contains a data segment for each name that is
declared OWN in the module. Such a data segment is permanently allo-
cated. It can be accessed only from the module in which it is declared.

e A GLOBAL program section contains a data segment for each name that
is declared GLOBAL in the module. Such a data segment is permanently
allocated. It can be accessed from the module in which it is declared and
in any module in which its name is declared EXTERNAL.

e A PLIT program section contains a data segment for each PLIT used in
the module.

e A CODE program section contains a code segment for each routine that is
declared in the module.

The programmer can leave the management of program sections to the com-
piler; and in that case each module will have no more than one of each kind of
program section. On the other hand, the programmer can specify several
program sections of the same kind for a module and can determine which data
segments or routines are allocated in which program sections.

BLISS Values and Data Representations 3-17

The division of storage for a module into sections permits the operating sys-
tem to manage storage effectively. For example, an OWN section need be
present only when its associated module is being executed, whereas a
GLOBAL section must be present more frequently. For another example, the
PLIT and CODE sections are not modified during program execution and can
therefore be regarded as read-only storage.

The declarations of OWN and GLOBAL segment names are described in
Sections 10.1 and 10.2. The definition of plits is given in Section 4.4. The
declaration of routines is described in section 12.3.

3-18 BLISS Values and Data Representations

Chapter 4 Primary Expressions

April 1983

4.1

4.2

4.3

4.4

4.5

4.6
4.7
4.8
4.9
4.10

Primaries v v v e 4-1
4.1.1 Syntax. e e e e e e e e e e e e e 4-2
4.1.2 Semantics 0t e e e e e e e e e e e e e e e e e e 4-2
Numeric-Literals.« v o v v e e e e e e e e e e e e e 4-2
4.2.1 Syntax. e e e e e e e e e e e e e e e 4-3
4.2.2 Restrictions v 0 e e e e e e e e e e e e e e e 4-5
4923 Defaults« .« o e e e e e e e e e e e e e e e 4-6
4.2.4 Semantics o h e e e e e e e e e e e e e e e e 4-6

4.2.4.1 Limitations on Float-Literals. 4-6
String Literals.o o oo s e 4-7
431 Syntax. o e e e e e e e e e e e e 4-8
4.3.2 Restrictions v i e e e e e e e e e e e e e e 4-8
4.3.83 Defaults 0 e e e e e e e e e e e e e e e e e 4-9
434 SemantiCs« . v vt e e e e e e e e e e e e e e e e e 4-10
Plits e e e e e e e e e e e e e e e e e e e 4-12
441 Syntax. o v e e e e e e e e e e e e e e e e 4-13
4.4.2 -Restrictions« . . 0 o e o e e e e e e e e 4-13
4.4.3 Defaults« « 0 e e e e e e e e e e e e e e e e 4-14
4.4.4 Semantics« . v e e e e e e e e e e e e e e e e 4-14
445 Pragmatics. 00000 e e e e 4-15
NAMES . . . v v v e 4-15
451 Syntax. e e e e e e e e e e e e e e e e 4-16
452 Restrictions « v v v e v e e e e e e e e e e e e e 4-16
458 SemantiCs . . . v v v e e e e e e e e e e e e e e e e e 4-16
BlocKkSs. e 4-17
Structure-References « v v o v 0 o v v e v e e e e e 4-17
Routine-Calls« v e e e e e e e e e e e e e e 4-17
Field-References v v v v v v v e e e e e e e e e e e 4-18
Codecomments v v v v e e e e e e e e e e e e e e e e 4-18
4.10.1 Syntax. v e e e e e e e e e e e e e e e 4-18
4.10.2 Semantics v e e e e e e e e e e e e e e e e 4-18

Chapter 4
Primary Expressions

In most high level languages, the term expression refers to the kinds of con-
struct that perform calculation, such as the addition of two numbers or,
perhaps, the concatenation of two strings. Such expressions obviously have
values; in fact, their sole purpose is to calculate values.

In BLISS, the term expression applies to all constructs of the language except
declarations. For example, the construct that assigns a value to a data seg-
ment is an expression and has a value. As another example, the construct that
controls an execution loop is also an expression and has a value. Thus it is
possible, although unusual, to add the value of an assignment-expression to
the value of a loop-expression.

There are four kinds of expression, as shown in the following syntax diagram:

primary
operator-expression
executable-function
control-expression

expression

This chapter describes primary expressions. It is the first of four chapters that
describe the various kinds of expressions.

The first section of this chapter discusses primaries in a general way. Each of
the remaining sections of this chapter describes one kind of primary in more
detail.

4.1 Primaries

Every expression is built up from one or more primaries. The simplest form of
expression is a single primary. More complicated expressions are constructed
of primaries in combination with operators.

There is considerable variety among the primaries. A primary can be simply a
numeric-literal, such as 4, or it can be a block of considerable length and
complexity. A primary can specify a very elementary operation, such as the
formation of a storage address, or it can call a long and complicated routine.

4-1

Examples of primary expressions are:

5 A numeric-literal whose value is 5

‘Ewter data:’ A string-literal composed of 11 ASCII characters

PLIT (5.4) A pointer to a pair of literals

TOP.OF_LIST A name

FO) A call to routine F with no parameters

G(5, PLIT(5,4)) A call to routine G with two parameters

¥LACCESS_.LEVELI A structure-reference to a field of a data structure
named X

BETA<Z24B6% A field-reference to the six high-order bits of the byte
at BETA

(X +) A simple kind of block, called a parenthesized expres-
sion

BEGIN

LOCAL T3

Te0s A more complicated block, which contains declaration

C(T.5)s and two expressions

END

4.1.1 Syntax

(numeric-literal
string-literal
plit

name

primary { block N
structure-reference
routine-call
field-reference
codecomment /

4.1.2 Semantics

The semantics of primaries is given in the following sections, where each kind
of primary is considered individually.

4.2 Numeric-Literals

A numeric-literal is used to represent a specific number. An integer value can
be written in any one of four radices: binary, octal, decimal, or hexadecimal.
A special-purpose way of representing an integer is the character-code literal,
which represents the ASCII code for a given character as a transportable,
fullword value. A floating-point value can be written in single or double preci-
sion.

4-2 Primary Expressions

Wherever the radix for a BLISS literal is not given, the radix is assumed to be
decimal. This manual follows the same convention; that is, wherever a num-
ber appears in the text without an explicit radix, the number is assumed to be
decimal.

The following examples show five different ways to write a numeric literal tor
the value 15.

15 Standard decimal-literal
B 1111 Binary integer-literal
w017 Octal integer-literal
YDECIMAL 157 Decimal integer-literal
U Hexadecimal integer-literal

The character-code-literal is used to express, in a transportable way, the
numeric value of the ASCII code for a character. For example,

LA
has the value 65 (decimal), which is the ASCII code for “A”.

Certain literal names are predeclared by the compilers and have specific
numeric values. The values reflect various aspects of the target system archi-
tecture. For example, (‘BPADDR is predeclared with a value that is the
number of bits required for an address value, which varies for each target
system. Therefore the predeclared name ‘(BPADDR has a different value for
each BLISS compiler: 16 in BLISS-16, 32 in BLISS-32, and 18 or 30 (depend-
ing on the target-system environment) in BLISS-36. The predeclared literal
names are described in Section 14.1.5.

4.2.1 Syntax

decimal-literal
integer-literal
character-code-literal
float-literal

numeric-literal

decimal-literal decimal-digit ...

decimal-digit {0|1|2|3|4|5|6|7|8|9}
%B I
%0 |

integer-literal S%DECIMAL " opt-sign integer-digit ...
%X

opt-sign { + | = | nothing |

Primary Expressions 4-3

integer-digit

character-code-
literal

“C " quoted-character ’

quoted-character

printing-character-except-apostrophe
blank
tab

float-literal

single-precision-float-literal

double-precision-float-literal

extended-exponent-double-precision-
float-literal

extended-exponent-extended-precision-
float-literal

single-precision-
float-literal

“%E ' mantissa { E exponent}

nothing

double-precision-
float-literal

“D * mantissa { D exponent}

nothing

extended-exponent-
double-precision-
float-literal

G exponent <= 36 Only
©G ’ mantissa { Q exponent ¢ * <= 32 Only
nothing T <= 32/36

extended-exponent-
extended-precision-
float-literal

“%H “ mantissa { Q exponent} " <= 32 Only

nothing
digits
mantissa 0 i digits .
pt-sign o
. digits
digits . digits
exponent opt-sign digits
digits decimal-digit ...
opt-sign { + | = | nothing |

Primary Expressions

April 1983

April 1983

Some of the numeric-literals are composed of two lexemes. Specifically. in an
integer-literal, the radix indicator (%B, <0, ««(DECIMAL, or “X) is a lexeme
and the remainder is another; and in a float-literal, the precision indicator
(R, D, G or ¢«H) is a lexeme and the remainder is another.

The quoted-string in a numeric-literal can be supplied by certain lexical-
functions (see Section 15.5).

A printing-character is any ASCII character whose code, i, is in the range 33 <
i < 126 (decimal). A printing-character-except-apostrophe is any printing
character except an apostrophe. The apostrophe is the ASCII character with
code 39 (decimal).

The blank is the ASCII character with code 32 (decimal). The tab is the
ASCII character with code 9 (decimal).

4.2.2 Restrictions

The digits in an integer-literal must conform to the radix specified by the
keyword at the beginning of the literal. Depending on whether the keyword is
B, <0, S DECIMAL, or X, the digits must be binary, octal, decimal, or
hexadecimal.

A space must not appear in a numeric-literal except between the lexemes of a
two-lexeme numeric-literal (see Section 4.2.1).

When a numeric-literal (other than a float-literal) is evaluated, its value, i,
must fit in a fullword; that is, it must lie in the range

~(2**(©:BPVAL-1)) < i < (2**(%BPVAL-1))-1
See Section 3.1.1 for the definition of %BPVAL for each target system.

When a float-literal is evaluated its value, x, must fit in the target system’s
machine representation of a floating-point value. The maximum approximate
value range of x for each target-system family is as follows:

e For BLISS-16: 0.29%*(10**-38) < abs(x) < 1.7*(10**38)
e For BLISS-32: 0.84*(10**-4932) < abs(x) < 0.59(10**4932)
e For BLISS-36: 0.56*(10**-308) < abs(x) < 0.9%(10**308)

The listed value ranges of x reflect %D for BLISS-16, %cH for BLISS-32, and
<G for BLISS-36.

Depending on the compiler used, float-literals can produce values that occupy
up to four fullwords; therefore, float-literals producing values that occupy
more than one fullword must appear in either a plit (see Section 4.4) or an
initial-attribute (see Section 9.6).

Ut

Primary Expressions 4

The relationship, by compiler, of tloat-literals to fullwords is:

Float-literal Size (fullwords)
kevword 32 36 16
“KE 1 1 2
“D 2 2 4
G 2 2 -
““H 4 - -

4.2.3 Defaults

The default for the sign of a numeric-literal is *+'. For example, the numeric-

literal /O 777" is equivalent to Q +777°

The default radix is decimal; that is, when a sequence of digits appears
without a radix keyword and without quotes, it is assumed to be a decimal-
literal.

4.2.4 Semantics

A decimal-literal is interpreted as the decimal representation of an integer
value.

An integer-literal begins with a keyword that determines its interpretation by
giving the radix of the literal. Depending on whether the keyword is B, <O,
“«DECIMAL, or “¢X, the sequence of digits within the quotes are interpreted
as a binary, octal, decimal, or hexadecimal representation, respectively, of an
integer value.

The value of a character-code-literal is the integer that is the ASCII character
code for the quoted-character. When two apostrophes are used as the quoted-
character, the value of the literal'is the character code for a single apostrophe;
that is, the character-code-literal “/C """’ has the value 39 (decimal).

The evaluation of a numeric-literal produces an integer value. If the literal
has a minus sign, then its value is represented as a negative number in two’s
complement form. The evaluation of a *(E float-literal in 32 and 36 produces a
dialect-specific fullword value.

4.2.4.1 Limitations on Float-Literals — Referring to the chart in Section 4.2.2,
which defines the float-literal sizes (in fullwords) needed by the compiler,
note that values requiring more than <BPVAL bits for their representation
cannot be stored in a fullword and cannot be directly operated upon by any of
the BLISS operators or executable-functions.

Except for a few builtin machine-specific-functions, BLISS does not provide
facilities for operating upon any float-literal as such. Float-literals are pro-
vided in BLISS in order to facilitate the development of special data segments
and special routines for performing high-precision arithmetic.

4-6 Primary Expressions April 1983

4.3 String Literals

A string-literal contains a sequence of ASCII characters. The value of the
string-literal is obtained by encoding the sequence of characters in one of
several different ways, depending on the string-type of the literal (e.g..
¢ ASCII, ¢cASCIZ, %RAD50__11, %P).

A string-literal whose value occupies one fullword or less can be used as a
primary, that is, can appear anywhere that a primary expression is allowed.
The number of characters that can be encoded in a fullword varies with both
the target system and the string-type (Section 4.3.2). Examples are:

YASCIT AB’ in any dialect

%ASCIT 'ABCD’ in BLISS-32 or BLISS-36
%RADSO_11/ABC’ in BLISS-16 or BLISS-32
wRADSO_11'ABCDEF’ in BLISS-32 only
vraDSo_10aBCDEF’ in BLISS-36 only

In each of these examples, the quoted string is encoded into one fullword or
less in each of the dialects specified.

A string-literal whose value occupies more than a fullword is not a primary
expression and can be used only within a plit expression (see Section 4.4) or in
an initial-attribute (see Section 9.6). An example is:

‘A complete list of errors follows:’

The encoded value of this string-literal, consisting of 34 character positions,
occupies much more than a fullword on any target system.

Primary Expressions 4-7

4-8

4.3.1 Syntax

string-literal string-type } quoted-string
nothing
¢cASCII
“«ASCIZ
“%ASCIC ‘ <= 16/32

) % ASCID

string-type %RADS0_11 | <= 16/32
%RAD50_10 | <= 36 Only
SoSIXBIT <= 36 Only
%P <= 16/32

quoted-string { quoted-character }

nothing

printing-character-except-apostrophe
blank

quoted-character
tab

A printing character is any ASCII character whose code, i, is in the range 33 <
1 < 126 (decimal). A printing-character-except-apostrophe is any printing
character except an apostrophe. The apostrophe is the ASCII character with
code 39 (decimal).

The blank is the ASCII character with code 32 (decimal). The tab is the
ASCII character with code 9 (decimal).

Some of the string-literals are composed of two lexemes, the string-type and a
quoted-string. Spaces are permitted between the two lexemes.

The quoted-string in a string-literal can be constructed by certain lexical-
functions, which are described in Chapter 15. A quoted-string constructed in
that way can be composed of any sequence of ASCII characters and therefore
is not restricted to printing characters, blanks, and tabs.

The quoted-string in a string-literal can also be supplied by another string-
literal. This feature is mainly useful in the design of macros and is discussed
in Section 15.3.2.2.

4.3.2 Restrictions

A quoted-string is a single lexeme. As the syntax shows, the quoted-string can
contain blanks and tabs. These characters are interpreted as characters in the
string, not as characters that divide the quoted-string into several lexemes.

Primary Expressions

Aside from blanks and tabs,.no other spaces (as defined in Section 2.2.2) can
appear in the source text for a quoted-string.

A string-literal that is not a plit-string in a plit or initial-attribute must fit in
one fullword. With %ASCID excepted, specific limitations on string length are
given in the following table, by dialect and string-type:

Dialect Max. Number of Characters in Fullword

ASCII ASCIZ ASCIC RAD50__11 SIXBIT RAD50_10 P
BLISS-16 2 1 1 3 — — 3*
BLISS-32 4 3 3 , 6 — — 7*
BLISS-36 5 4 — — 6 6 —

* Plus optional sign character.

BLISS-16/32 ONLY
A %ASCIC string-literal must contain no more than 255 quoted-characters.

A %RAD50__11 string-literal may contain only the characters A through Z,
0 through 9, blank, period (.), and dollar ($) in the quoted-string. Lowercase
letters appearing in the quoted-string are encoded as the corresponding
uppercase letters.

A %P string-literal must contain only the decimal digits (0 through 9)
except for an optional initial sign (+ or -). There must not be more than 31
digits in the quoted-string.

BLISS-36 ONLY

A %RADS50__10 string-literal may contain only the characters A through Z,
0 through 9, blank, period (.), dollar ($), and percent (%) in the quoted-
string. Lowercase letters appearing in the quoted-string are encoded as the
corresponding uppercase letters.

A %SIXBIT string-literal may contain any quoted-characters except the
following: tab (9), * (96), { (123), | (124), } (125), and ~ (126). (The paren-
thesized ASCII codes are in decimal.) Lowercase letters appearing in the
quoted-string are encoded as the corresponding uppercase letters.

Other restrictions on the length of string-literals (if any) are given in the
appropriate BLISS user’s guide.

4.3.3 Defaults

The default for the string-type is %ASCIL. For example, the string-literal
‘abc’ is equivalent to %ASCII “abc".

The default for the sign in a %P string-literal is ““+”. For example, the string-
literal %P 2" is equivalent to %P +2".

Primary Expressions 4-9

4.3.4 Semantics

Each quoted-character in a string-literal represents one character code in the
value. A printing-character-except-apostrophe, a blank. or a tab represents
itself. A sequence of two apostrophes represents a single apostrophe.

A “(ASCID string-type is similar to a ¢ ASCII tvpe; however, (¢ ASCID differs
in that it creates a string descriptor for the quoted-string, and expands to the
address of the data segment that contains the descriptor. The string and its
descriptor are allocated in a PLIT PSECT (see Chapter 18), and just as the
value of a PLIT is the address of the plit-body. the value of . ASCID is the
address of the descriptor.

The ““ASCID string creates the following descriptor formats:

For BLISS-32:

31 24 23 16 15 0

1 14 string length

character pointer

Note that on/v the BLISS-32 implementation of < ASCID is compatible with
XPORT strings.

For BLISS-36:

35 18 17 0

character pointer

0 string length

For BLISS-16:

15 0

string length

character pointer

This format follows the PDP-11 Extended Instruction Set guidelines. Note
that the “string length” must be an unsigned 16-bit quantity in the range 0 to
65535 decimal.

The remaining semantic description uses the generalized terms character
position and character position sequence. The machine specific equivalents of

4-10 Primary Expressions April 1983

these terms are given in Section 3.3. (See also Chapter 20, on “Character
Handling Functions”.)

The value of a string-literal is determined in several steps, as follows:

1. For string-types %ASCIZ and %ASCIC, augment the string of quoted-
characters as follows:

a.

b.

If %ASCIZ, add a trailing null character (ASCII code 0) to the
string.

If %ASCIC (16/32 only), count the characters in the quoted-string
and use this (8-bit integer) count as the initial ‘character’ of the
string, preceding the first quoted-character.

2. Encode the character string, augmented as required by Step 1, accord-
ing to the string-type and dialect, as follows:

a.

For string types %ASCII, %ASCID, and %ASCIZ, form a charac-
ter position sequence that has one character position for each
character in the string. For BLISS-16 and -32, use the 8-bit ASCII
code of the i’th character as the value of the i’th character posi-
tion. For BLISS-36, use the corresponding 7-bit ASCII code. For
rules governing the filling of the last unit of storage refer to Sec-
tion 4.4.4.

. For string-type %ASCIC (16/32 only), form a character position

sequence as in Step 2.a, but use the initial count ‘character’ value
as is for the first character position.

For string-type %RAD50__11 (16/32 only), extend the original
quoted-string with enough trailing blank characters to make up a
multiple of three characters, if necessary. Then use Radix-50 en-
coding to form a character position sequence that has two charac-
ter positions for each group of three characters in the string. If
necessary, extend the resulting character position sequence with
enough trailing, zero-valued positions to fill the final (or only)
fullword occupied by the sequence.

For string-type #RAD50__10 (36 only), use Radix-50 encoding to
form a fullword for each group of six (or fewer) quoted-characters
in the string. This encoding always produces one or more complete
fullwords.

For string type %SIXBIT (36 only), form a character position
sequence that has one (6-bit) character position for each character
in the string. Use the SIXBIT code equivalent of the ASCII code
of the i’th character as the value of the i’th character position. If
necessary, extend the resulting character position sequence with
enough trailing, zero-valued positions to fill the final (or only)
fullword occupied by the sequence.

Primary Expressions 4-11

4.4 Plits

f. For string-type %P (16/32 only), use the PDP-11/VAX-11 packed
decimal string encoding to form a sequence that has one byte for
each two digits of the quoted-string, and that provides a position
for the sign in the last byte. Leading zero characters are not dis-
carded in forming this sequence. (The packed decimal encoding is
described in the VAX-11/780 Architecture Handbook, Section
4.11.)

Note: The ordering of character positions in storage is system depen-
dent, and is described in Chapter 3. The ASCII, Radix-50, and
SIXBIT string encodings are described in Appendix B.

3. Use the character position sequence obtained in Step 2 as follows:

a. If the given literal appears in a plit or initial-attribute, use the
sequence as the value of the literal.

b. If the given literal does not appear in a plit or initial-attribute and
the sequence is contained in a single fullword, the fullword is the
required literal value.

c. Otherwise, the sequence is invalid as a string-literal and the literal
value is undefined.

The interpretation of a string-literal is performed entirely by the compiler. If
the string-literal is a plit-string, then the compiler uses the value in forming a
literal in PLIT storage, as described in Section 4.4. If the string-literal is an
initial-value, then the compiler uses the value to initialize the contents of a
data segment, as described in Section 9.6. Otherwise, the compiler incorpo-
rates the value of the string-literal in the object code it is generating.

A constant value that requires no more than a fullword of storage can be
represented by a numeric-literal or string-literal that stands alone (that is, is
not contained in a plit). A constant value that requires more storage must be
represented by a plit.

The value of a plit is not the value of the given constant but rather the address
of a data segment that contains the given constant. The data segment for a
plit is allocated in a PLIT program section, and it is initialized to the given
constant value before program execution begins.

There are two kinds of plits. The counted plit begins with the keyword PLIT,
which stands for “pointer to literal”. The data segment for this kind of plit
begins with an extra fullword that contains the count for the plit. The count is
the number of fullwords in the plit excluding the fullword used for the count.
The second kind of plit, the uncounted plit, begins with the keyword UPLIT,
which stands for “uncounted pointer to literal”’. The data segment for this
kind of plit does not include a fullword for the count.

4-12 Primary Expressions

4.4.1 Syntax

plit

{ PLIT }
UPLIT

allocation-unit

psect-allocation
psect-allocation allocation-unit
nothing

(plit-item ,...)

<= 16/32

<= 16/32

psect-allocation

PSECT (psect-name)

psect-name

name

plit-item

plit-group
plit-expression

plit-string

plit-group

REP replicator OF

{ allocation-unit
REP replicator OF allocation-unit

(plit-item ,...)

}

<= 16/32

<= 16/32

16/32 Only =>

allocation-unit

WORD

LONG } <= 32 Only
{ BYTE

replicator

compile-time-constant-expression

plit-expression

link-time-constant-expression

plit-string

string-literal

4.4.2 Restrictions

An appropriate psect-declaration (see Section 18.1) must be made before a
psect-allocation attribute (see Section 9.8) can be used in a plit.

The value of a replicator must not be less than zero.

Primary Expressions 4-13

4-14

BLISS-16/32 ONLY

The value of a plit-expression allocated as BYTE must lie in the range
—(2**7) through (2**8)-1. The value of a plit-expression allocated as
WORD must lie in the range —(2**15) through (2**16)-1.

4.4.3 Defaults

When no “REP replicator OF” construct is given, a replicator value of 1 is
assumed.

4.4.4 Semantics

A plit causes constant data to be allocated. The value of the plit is the address
of the first addressable unit of the data specified by the plit-items. The com-
piler determines an address offset for the plit and the linker binds this offset
to an absolute address. ‘

If the plit has the keyword PLIT and therefore is a counted plit, then the
count is located in the fullword preceding the data specified by the plit-items.
The count indicates the number of fullwords occupied by the plit data.

In the simplest case, a plit is just the keyword PLIT or UPLIT followed by a
parenthesized list of plit-expressions or plit-strings. In this case, values of the
items are laid out in storage, starting at the plit address and continuing in the
direction of increasing addresses. The value of each plit-expression occupies a
fullword. The value of each string-literal occupies as many character positions
as the string requires, with unused character positions added, if necessary, to
fill out the final fullword.

BLISS-16/32 ONLY

When an allocation-unit is present, it specifies explicitly the unit of storage
to be used. Depending on whether the allocation-unit is LONG, WORD, or
BYTE, the value of each plit-expression occupies a longword, a word, or a
byte, respectively. Similarly, the value of each string-literal occupies as
many bytes as the string requires, with unused bytes added, if necessary, to
fill out the last unit of storage. (The allocation-unit LONG and the long-
word storage unit apply to BLISS-32 only.)

When an allocation-unit is given, the item or items to which it applies are
enclosed in parentheses. Several allocation-units can be used in a single
plit; for any given item, the innermost allocation-unit is the one that
applies.

When both a psect-allocation attribute and an allocation-unit of storage are
used in a plit they may appear in any order. For example:
PLIT PSECT(DWN) BYTE(7)
The psect-name ($OWNS$ in the example) specified in the attribute mnst be

either predeclared, a default program-section name, or explicitly declared in a
preceding psect-declaration.

Primary Expressions

The psect-allocation attribute provides a more convenient way of making
program-section assignments for a plit than is possible using the psect-decla-
ration alone (see Section 9.8).

When a “replicator OF” construct is present, it specifies the repetition of the
plit-group that follows it. The plit-group is evaluated before it is repeated.
Thus, if the plit-group contains an embedded plit, the embedded plit is allo-
cated once, and its address is used in each repetition of the plit-group.

The evaluation of plits is performed by the compiler, the linker, and the
operating system before program execution. Thus during program execution,
a plit represents the constant address of a sequence of constant values.

When the values specified by a plit do not completely fill the last fullword of
the plit, the values of the unused character positions are undefined. A pro-
gram that attempts to access the unused character positions is invalid.

Plits are not necessarily allocated in the order in which they are written, and
unused storage may be left between the storage for one plit and that for the
next. Therefore, the relative positions of two plits is undefined. A program
that depends on the relative positions of two plits is invalid.

4.4.5 Pragmatics

A plit-expression is not restricted to numeric-literals. It can be any link-time-
constant-expression, and can therefore include address-valued names whose
value is established at link time. Suppose the following declarations are
given:
OWN
A: VECTORL101,
B
EXTERNAL
Then, within the scope of these declarations, the following plit can be used:
UPLIT(ALAT, B+2, X

This plit occupies three fullwords. The first contains the address of the fifth
element of A. The second contains the address B plus 2. The third fullword
contains the address X.

4.5 Names

A name usually designates the address of a routine or a data segment. The
value of such a name is determined by the compiler, linker, and operating
system together. Within the scope of a given declaration of a name (as defined
in Section 8.2), the value of a name does not change during program execu-
tion.

Primary Expressions 4-15

4-16

4.5.1 Syntax

letter
letter digit
name { dollar dollar
underline underline
nothing
AIBICI—11%Z
tt
letter {alblcl———lz}
digit {01 1121 -—19}
dollar $
underline _

A name can be constructed by the %NAME lexical-function, described in
Section 15.5.4. A name constructed in that way can be composed of any
sequence of ASCII characters and therefore need not satisfy the syntax given
above,

4.5.2 Restrictions

A name must not be more than 31 characters long in any case.

The reserved keywords, listed in Appendix A, must not be used as names.
A name is a single lexeme and must not contain a space.

The dollar character is reserved for use in software supplied by Digital.

BLISS-16/36 ONLY

Names declared as global or external must be unique within their first six
characters (throughout a program), to assure correct linking.

4.5.3 Semantics

When two names are compared, the distinction between uppercase and lower-
case letters is ignored. Thus the following items are considered to be four
instances of the same name:

BETA beta Beta bEta

This equivalence also applies to keywords. The only place where an uppercase
letter is distinguished from a lowercase letter is in a quoted-string.

The interpretation of a name depends on its declaration. Declarations are
described in Chapter 8.

Primary Expressions

4.6 Blocks

In its simplest form, a block is a means to gather together one or more expres-
sions to form a single primary expression. In its more complicated forms, a
block contains declarations and determines the scope of those declarations. It
provides the fundamental large-scale unit of BLISS program structure.

In the example
5 % (WA + .B)
the block (\A + .B) sefves to specify that the value of .A + .B is one of the
operands of the multiply operator.
The block

X = BEGIN
LOCAL T3
T = 2 + F(O)3
T = T % G(.T)3
+ T .
END

contains a declaration of a local data segment T which is used within the
block as a temporary variable. When the block is completed, the contents of T
becomes the value of the block, and is assigned to X.

The complete description of blocks is given in Chapter 8.

4.7 Structure-References

When a data segment consists of ‘a structure of several values, a structure-
reference is used to fetch or store the individual values. A structure-reference
can also be used to designate the address of a contained value.

Examples of expressions containing structure-references are:
¥=,AL, 11

TABLELQ(. H{+2)+31 = 5
F(ALPHALFIELDNAME »,J-11)

The complete description of structure-references-is given in Chapter 11.

4.8 Routine-Calls

A routine-call causes the execution of a routine. The called routine may be a
part of the same module that calls it or it may be part of another module in
the same program. The routine may be written in BLISS or in some other
language that is supported by the target system.

The execution of a routine can have two kinds of effects. First, it can calculate
a value that is returned as the value of the routine-call. Second, it can have
side effects; that is, it can perform actions other than returning a calculated
value, such as modifying data, performing input/output, and so on.

Primary Expressions 4-17

The expression “X = F()” calls the routine named F but does not pass any
arguments. The value returned by F is assigned to location X.

The expression
P{S, .¥» UPLIT('MESSAGE’))}

calls the routine named P and passes three arguments: the value 5, the con-
tents of location X and the address of an ASCII string. The value returnea by
routine P, if any, is not used.

The complete description of routine-calls is given in Chapter 12.

4.9 Field-References

A field-reference can designate any portion of storage of up to %BPVAL bits
in length. That is, it designates a field value that can range in size from one
bit to a fullword. In BLISS-32, for example, the field can be a sequence of up
to 32 bits. Normally, a field-reference is used only within a structure-declara-
tion.

The full description of field-references is given in Chapter 11.

4.10 Codecomments

4-18

A codecomment places a comment in the object part of the compilation listing
of the module in which it appears. Thus codecomments permit annotation of
the object code.

In addition, a codecomment acts as a barrier to optimizations that are nor-
mally performed by the compiler, in that such optimizations do not cross the
codecomment. Thus it divides the source listing and the object listing into
portions that contain mutually corresponding source and object code.

4.10.1 Syntax

codecomment CODECOMMENT quoted-string ,... : block

4.10.2 Semantics
The value of a codecomment expression is the value of the block.

A codecomment places the given quoted-string in the object code listing in the
form of an assembly language comment.

A codecomment expression prevents code motion. That is, expressions in the
source that appear before the codecomment expression are compiled into
instructions in the object code that precede the generated comment, and
source expressions that follow the codecomment expression are compiled into
instructions that follow the generated comment.

Primary Expressions

A codecomment has other effects on optimization. For example, the compiler
will not place a value in temporary storage (such as a register) prior to a
codecomment and then fetch the value after the codecomment. Instead, the

compiler recalculates the value.

A general description of optimization is given in the user’s guide for each
BLISS compiler.

Primary Expressions 4-19

Chapter 5 Computational Expressions

5.1

5.2

Operator-Expressions. oo 5-1
511 Syntax. e e e e e e e e e e 5-2
5.1.2 Restrictions« . . . v o e o e e e e e e e e e 5-3
5.1.8 Defaults« v v v e e e e e e e e e e e e e e 5-3
5.1.4 Semantics v v o e e e e e e e e e e e e e e e e 5-4
5.1.4.1 TFetch Expressions« ... 5-5
5.1.4.2 Prefix Sign Expressions 5-6
5.1.4.3 Shift Expression. 5-6
5.1.4.4 Arithmetic Expressions. « .« . . . 5-7
5.1.4.5 Relational Expressions 5-8
5.1.4.6 Boolean Expressions 5-9
5.1.4.7 Assignment Expressions 5-10
5.1.5 Pragmatics.o 5-11
5.1.5.1 Explicit Parenthesization. 5-11
5.1.5.2 The Order of Evaluation 5-12
5.1.5.8 Operations on Field Values in BLISS-16/32 5-13
Executable-Functions« « . o oo e 5-14
B.2.1 Syntax. e v e e e e e e e e e e e e e 5-15
5.2.2 SemantiCs+ .« v v 0 e e e e e e e e e e e e 5-15
5.2.2.1 SIGN and ABS Functions 5-15
5.2.2.2 MAX and MIN Functions 5-16
5.2.2.83 The %REF Function.« . .« .. 5-17
5.2.3 Pragmatics. oo e 5-18

Chapter 5
Computational Expressions

The computational expressions of BLISS provide the operations of the lan-
guage. A single computational expression performs a single basic operation,
like addition or the fetching of a value. A combination of computational
expressions, nested one within another, can perform a long and complicated
sequence of operations.

Computational expressions are classified as either operator-expressions or exe-
cutable-functions. A typical operator-expression is A=0; it assigns a value,
that is, places a value in storage. It is identified by the “=" operator that
appears between the two operands, A and 0. A typical executable-function is
MAX(.X,.Y,.Z); it selects the maximum of several values, and it is identified
by the keyword MAX that precedes the parameters .X, .Y, and .Z. All compu-
tational expressions, regardless of their syntax, perform a predefined opera-
tion on given values to produce a result value.

5.1 Operator-Expressions

The notation used for the operator-expressions of BLISS is similar to the
notation of mathematics. The terms “operator”, “operand”’, and ‘‘associa-
tivity” that are used in describing BLISS expressions are all drawn from the
terminology of mathematics.

5-1

2

5.1.1 Syntax

The following syntax diagram gives the many forms of the operator-expres-
sion. The forms are divided by broken lines into priority levels, and an associ-
ativity is given for each priority level. This information is used in Section

5.1.3.
Associates
from
operator- e2 right to left
expression
{ t} e2 right to left
g
el ° e2 left to right
decreasing MPD .
priority el) e2 left to right
el { i } e2 left to right
\
' EQL | EQLU | EQLA
NEQ | NEQU | NEQA
e1 J LSS 1 LSSU I LSSA e2 left to right
LEQ | LEQU | LEQA
GTR | GTRU | GTRA
GEQ | GEQU | GEQA
NOT e2 right to left
el AND e2 left to right
el OR e2 left to right
EQV .
el { XOR} e2 left to right
el = e2 right to left
el primary
92} { operator-expression
executable-function

Computational Expressions

Every operator-expression has one of the following general forms:
prefix-operator right-operand
left-operand infix-operator right-operand

The operands must be expressions and the operator is either a keyword or a
single delimiter character.

5.1.2 Restrictions

An operator-expression must not have an operand that is a control-expression.
This restriction is expressed in the syntax (in the rule that defines el and e2,)
but is repeated here for emphasis. For example, the operator-expression

¥ = IF JALPHA EGL O THEN X1 ELSE JXZ

is not valid. (Parentheses can be used to avoid this restriction, by converting
the right-operand to a compound-expression; see Sections 8.1 and 5.1.5.1.)

A prefix-operator must not immediately follow an infix or prefix operator that
has a higher priority. For example,

+A EOQL NOT B

is not valid. (Parentheses can be used to avoid this restriction, as above; see
Sections 8.1 and 5.1.5.1.)

The result of an arithmetic operation (“*”, </, “MOD”, “+”, and “~) must
not exceed the capacity of a signed fullword; if it does so, the result is unde-
fined.

The value of the right operand of a “MOD” or “‘/”” operator must not be zero.

5.1.3 Defaults

The default parenthesization for operator-expressions is determined by the
priority levels and associativities given in the syntax diagram for operator-
expressions. The following rules apply:

1. Parenthesize the operators of a given expression in order of descending
priority. That is, first parenthesize all fetch operators (highest priority),
then parenthesize all prefix “+” and “-” operators (second highest
priority), then continue in this manner through operators of decreas-
ing priority, and finally parenthesize all assignment operators (lowest
priority).

2. If an expression contains several occurrences of operators that have a
given priority, then parenthesize those operators in the order indicated
by the associativity. If the associativity for a given priority level is “left
to right”, then parenthesize operators with that priority from left to
right; if the associativity is “right to left”, then parenthesize from right
to left.

When an operator is parenthesized, the parentheses surround the operator
and the one or two operands required by the operator.

Computational Expressions 5-3

5-4

As an example of the application of these rules, consider the following expres-
sion:

I¥R(B)-Z%,A+12
This expression contains four operators, and there are many ways in which it

could be explicitly parenthesized. The default parenthesization is obtained as
follows:

1. The fetch operator has the highest priority and is parenthesized first,
giving:
3¥R(B)-2%(,A)+12
2. Of the remaining operators in the expression, the two “*” operators
have the highest priority and are parenthesized next, giving:
(B*¥R(B)) - (2% (,A)I+12
3. The remaining operators are “~”” and “+” used as infix operators. These
operators have the same priority level and so associativity must be

taken into account. Since associativity is ““left to right” for these opera-
tors, the “~” is parenthesized first, giving:

((3*R(BI) - (2%, AN)I+12

13 b3

4. Finally, the remaining operator, “+” is parenthesized, giving:
(((3*R(B)) - (2% (,AY))+12)

This fully-parenthesized expression is equivalent to the original, unparen-
thesized expression.

Observe that, in the example just given, the routine-call is treated as a single
construct because it is a complete primary. That is, 3*R(B) is parenthesized
as (3*R(B)) rather than (3*R)(B). Structure-references and field-references
are treated as a singlé construct in a similar way.

Explicit parenthesization is discussed in Section 5.1.5.1.

5.1.4 Semantics
An operator-expression is evaluated as follows:

1. Evaluate the operand(s) of the expression.

2. Calculate a value according to the specific rules for the given operator.
The value obtained in Step 2 is the value of the expression.

In general, the order in which the operands of an operator-expression are
evaluated is not defined. (See Section 5.1.5.2.)

The order in which assignment expressions, routine-calls, and control-expres-
sions are evaluated is, however, defined as follows:

Every evaluation of an assignment expression, routine-call, or control-ex-
pression in the left operand of an operator-expression is completed before
any evaluation of an assignment expression, routine-call, or control-expres-
sion in the right operand of the operator-expression is begun.

Computational Expressions

(The consequences of this ordering rule are discussed in Section 5.1.5.2.)

The value of every BLISS expression is a fullword value. It follows that the
value of the operands of an operator-expression are fullword values and that
the value of the operator-expression itself is a fullword value.

In some cases, an operator-expression produces a value that cannot be repre-
sented as a fullword value. In such cases, the value of the expression is unde-
fined and the program is invalid. There is no guarantee that such an overflow
is detected or signaled.

The remainder of this description of semantics is devoted to specific rules for
the various operator-expressions. The operator expressions are grouped ac-
cording to function, but they are nevertheless described in the order in which
they appear in the syntax diagram; that is, in order of decreasing priority.

5.1.4.1 Fetch Expressions — A fetch expression obtains the value that is
stored at a given address. The expression has the form:

-~
¢+ e

The operand of a fetch expression can be a field-reference that has a field-
selector; in that case the fetch expression has a special interpretation. How-
ever, the use of a field-selector outside of a structure-declaration is not recom-
mended. For that reason, the effect of a field-selector on a fetch expression is
described later, in Section 11.2.

A fetch expression without a field-selector is evaluated as follows:

BLISS-16/32 ONLY

1. If e2 is the name of a data-segment, then determine its allocation-unit
and extension-attribute from its declaration. If e2 is any other expres-
sion, then use the default allocation-unit (WORD for BLISS-16, LONG
for BLISS-32) and use UNSIGNED as its extension-attribute.

2. Interpret the value of e2 as an address. Depending on whether the
allocation-unit of e2 is LONG, WORD, or BYTE, fetch the contents of
the longword, word, or byte at that address. (LONG and longword
apply to BLISS-32 only.)

3. If the value fetched in Step 2 is a field value (less than %BPVAL bits
long), interpret it as a signed or unsigned value depending on the exten-
sion-attribute. If the attribute is UNSIGNED, then extend it to a full-
word value by placing 0’s at the left end. If the attribute is SIGNED,
extend it to a fullword value by placing copies of the left-most (sign) bit
at the left end.

4. Use the fullword value obtained in Step 3 as the value of the fetch
expression.

BLISS-36 ONLY

1. Interpret the value of e2 as an address and fetch the contents of the
fullword at that address.

Computational Expressions 5-5

5-6

2. Use the fullword value obtained in Step 1 as the value of the fetch
expression. '

5.1.4.2 Prefix Sign Expressions — A prefix sign supplies the algebraic sign for
a given value. The expression has the following forms:

()

The expression is evaluated as follows:

e If the operator is ““+”’, then the value of the expression is the value of e2.

IR

¢ [f the operator is , then the value of the expression is the negative
(two’s complement) of the value of e2.

5.1.4.3 Shift Expression — This expression performs operations based on the
arithmetic shift instruction of the target system. The expression has the fol-
lowing form:

el * e2

This operation can be explained in terms of a hypothetical shift register that
is valid for all BLISS dialects. The register has n bit positions, where n is 16,
32 or 36 depending upon the target system (%BPVAL). The positions are
numbered starting at the right with position 0 (the low-order position) and
ending with position n-1 (the sign position), referred to below as position m.

To evaluate an arithmetic shift expression, place the value of e/ in the shift
register and let the value of €2 be called v2. Proceed as follows:

a. If v2 is positive, move each bit v2 positions to the left. When a bit is
moved out of the sign position, m, discard it. When a bit is moved out of
position 0, put a zero-bit in position 0.

b. If v2 is zero, do not move any bits.

c. If v2is negative, move each bit ABS(v2) positions to the right. However,
do not modify the bit in position m (the sign position). When a bit is
moved out of position m-1, put a copy of the sign bit in position m-1.
When a bit is moved out of position 0, discard it.

When the shift is complete, use the contents of the shift register as the value
of the shift expression.

Sometimes an arithmetic shift is used for scaling; that is, to multiply a value
by a power of two. For that application, the following interpretation of an
arithmetic shift is more appropriate:

1. Let vl and v2 be the signed values of the operands and calculate the
following value:

v1*(2¥*v2)
In this expression, 2**v2 means “2 to the power v2”.

2. If the result of Step 1 is not an integer, reduce it to the next smallest
integer. For example, reduce 2.5 to 2 and reduce -2.5 to -3.

Computational Expressions

3. Represent the result of Step 2 as a signed, two’s complement binary
integer. If the result requires more than %BPVAL bits for its represen-
tation, some of the high-order bits of the representation are lost.

This interpretation is entirely equivalent to the interpretation in terms of a
shift register; it is just another way of looking at the same operator.

Examples of arithmetic shift operations are given in the following table:

vl v2 2¥%*y2 v1¥*(2*¥*v2) vl'v2

10 2 4 40 40
-10 2 4 -40 -40
10 -2 0.25 2.5 2
-10 -2 0.25 -2.5 -3

All the values in this table are decimal numbers. Observe that when v2 is
positive, the arithmetic shift performs multiplication by a power of 2. When
v2 is negative and vl is positive, the shift performs division by a power of 2.
When v2 and vl are both negative, the shift performs something close to, but
not quite the same as, division by a power of 2.

5.1.4.4 Arithmetic Expressions — The multiplication, division, addition, and
subtraction expressions perform the operations of ordinary arithmetic. The
modulus (MOD) expression obtains the remainder of a division. The expres-
sion has the following form:

The values of the operands are interpreted as signed values, and the result is
represented as a signed value. If the result is outside the range provided by a
signed fullword, then the expression is invalid and the value of the expression
is undefined.

Let vl and v2 be the values of the operands. The expression is evaluated as
follows:

e If the operator is “*”’ (multiplication), then multiply v by v2 and use the
result as the value of the expression.

e If the operator is ““/”’ (division), then proceed as follows:

a. If v2is zero, the expression is invalid and the value of the expression is
undefined.

b. Otherwise, divide vI by v2. If the result is not an integer, drop its
fractional part without rounding (so that 2.8 becomes 2 and -2.8 be-
comes -2). Use the result as the value of the expression.

e If the operator is “MOD” (modulus), then proceed as follows:

a. If v2is zero, the expression is invalid and the value of the expression is
undefined.

Computational Expressions 5-7

5-8

b. Otherwise, divide vl by v2. Drop the fractional part of the value (so
that 2.8 becomes 2.0 and -2.8 becomes -2.0).

¢. Multiply the value

obtained in Step b by v2.

d. Subtract the value obtained in Step ¢ from v1 and use the result as the
value of the expression.

e If the operator is “+” (addition), then add v2 to vI and use the result as
the value of the expression.

[L3R4

¢ If the operator is

(subtraction), then subtract v2 from v1 and use the

result as the value of the expression.

The MOD operator is the remainder of the division of vI by v2. An aid to
understanding the MOD operator is the identity:

(vl MOD v2) EQL (v1-v2*(v1/v2))
Some examples of the “/”” and MOD operations are:
vl v2 vl/v2 vl MOD v2

10 3 3
10 -3 -3
-19 7 -2
-19 -7 2
13 2 6
13 8 1
13 10 1
13 16 0

13

The last four examples show how the MOD operator is used to obtain the last
digit of the binary, octal, decimal, and hexadecimal representations of 13.

5.1.4.5 Relational Expressions — A relational expression is used to compare
two values. The expression has the following form:

EQL | EQLU |
NEQ | NEQU |
LSS | LSSU |

el YLEQ | LEQU |
GTR | GTRU |
GEQ | GEQU |

EQLA
NEQA
LSSA
LEQA (©2
GTRA
GEQA

The interpretation of the operator itself is determined by the first three letters

of the operator, as follows:

EQL is equal to
NEQ is not equal to
L.SS is less than

LEQ is less than or equal to

GTR is greater than

GEQ is greater than or equal to

Computational Expressions

The interpretation of the operands is determined by the fourth letter of the
operator as follows:

No fourth letter: Interpret operand values as signed values.
Fourth letter is U: Interpret operand values as unsigned values.
Fourth letter is A: Interpret operand values as address values.

If the values of the operand satisfy the relation specified by the operator, then
the value of the relational expression is “1”’; otherwise, it is “0”’. In both cases,
the value is represented as.a fullword value.

In both BLISS-16 and BLISS-32, the operators LSSU and LSSA are equiva-
lent, as are GTRU and GTRA, LEQU and LEQA, and GEQU and GEQA.
That is, the unsigned and address forms of the 'magnitude sensitive’ rela-
tional operators are equivalent. In BLISS-36, however, the operators LSS
(signed) and LSSA are equivalent, as are GTR and GTRA, and so on. This
reflects a difference in the range of valid address values allowed by the corre-
sponding systems. The distinction between the signed/unsigned and the ad-
dress forms of the operators is provided so that programmers can specify the
desired interpretation of the values being operated on, in a both explicit and
transportable fashion.

Note that all forms of the EQL and NEQ operators are by nature equivalent
in all dialects; the unsigned and address forms are provided for symmetry
with the other relational operators discussed above. Use of the alternate forms
is encouraged for the sake of clarity.

Two examples of the use of relational expressions are:

Expression Value

-1 LSS 0 1 (true)
-1 LSSU 0 0 (false)

As another example, consider the following program fragment:
OWN

¥
Y5
X Lssa v
The value of the relational-expression in this example is 1 (true) because X is
allocated at a smaller address than Y.

5.1.4.6 Boolean Expressions — A Boolean expression is used to apply a
Boolean operation to given values. The expression has the following forms:
NOT e2

AND
OR

el XOR e2
EQV

Computational Expressions 5-9

5-10

Each of these expressions operate on the individual bits of the operands to
produce the individual bits of the result. The specific rules are:

e If the operator is NOT, then the i’th bit of the result is obtained from the
i’th bit of the value of e2 according to the following table:

e2 NOT
0 1
1 0

¢ If the expression has two operands, then the i’th bit of the result is
obtained from the i’th bit of the value of el and the i’th bit of the value of
e2 according to the following table:

el e2 AND OR XOR EQV

0 O 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 1

The appropriate rule is applied %BPVAL times, once for each bit in the
result.

Boolean logic applies to single bits while BLISS always operates on fullwords.
Therefore special precautions are sometimes required in programming Bool-
ean logic in BLISS.

Suppose, for example, that A is thought of as the name of a Boolean variable;
that is, a variable whose value is always 0 or 1. Suppose, further, that the
negation of the contents of A must be assigned to another Boolean variable,
which is named B. The following assignment might be tried out:

B = (NOT .A);

However, this assignment does not produce a Boolean value. Instead, its effect
(assuming a BLISS-32 fullword, for example) is:

Contents of A Contents of B

0 11111111111111111111111111111111 (binary)
1 11111111111111111111111111111110 (binary)

The low-order bit is the desired Boolean result, but the other bits clutter up
the result. To assign a Boolean value to B, the high-order bits can be masked
out as follows:

B = (NOT .A) AND 1); or B=.AXORI;

5.1.4.7 Assignment Expressions — An assignment expression is used to store
a given value at a given address. The form of the expression is:

el = e2

The left operand of an assignment expression can be a field-reference that has
a field-selector; in that case the assignment expression has a special interpre-
tation. However, the use of a field-selector is not recommended outside of a
structure-declaration. For that reason, the effect of a field-selector on an
assignment expression is described later, in Section 11.2.

Computational Expressions

An assignment-expression without a field-selector is evaluated as follows:

BLISS-16/32 ONLY

1. If el is the name of a data segment, then determine its allocation-unit
from its declaration. If el is any other expression, then use the default
allocation-unit (WORD for BLISS-16, LONG for BLISS-32).

2. Interpret the value of el as an address. Depending on whether the
allocation-unit of el is LONG, WORD, or BYTE, store the correspond-
ing number of rightmost bits of the value of 2 in the longword, word, or
byte at the given address. (LONG and longword apply to BLISS-32
only.) :

3. Use the original value of e2 (that is, the fullword value) as the value of
the assignment expression.

BLISS-36 ONLY

-1. Interpret the value of el as an address and store the value of €2 in the
fullword at the given address.

2. Use the value of e2 as the value of the assignment expression.

5.1.5 Pragmatics

Two aspects of the interpretation of operator-expressions are discussed here:
the effect of explicit parenthesization, and the order of expression evaluation.

5.1.5.1 Explicit Parenthesization — Any expression can be placed in
parentheses. The value of the parenthesized expression is the value of the
expression within the parentheses. The effect of the parentheses is to delimit
the operands of the expression. Consider the following expressions:

(A)+1
s (A+1)

The two different placements of the parentheses produce two expressions that
are not equivalent. In the first example, the operand of the fetch operator is
just A, while in the second example, it is A+1.

Every expression is fully parenthesized, if necessary, by the compiler to deter-
mine which operands go with each operator, according to the default rules
given in Section 5.1.3. For example, the default parenthesization of the ex-
pression .A+1 is:

(vAY+1

This parenthesization follows from the fact that the fetch operator has higher
priority than the addition operator. The expression could be explicitly paren-
thesized, however, as

A+L)

to specify the interpretation required.

Computational Expressions 5-11

5-12

Sometimes an operator-expression must be explicitly parenthesized because
of restrictions that prohibit the use of certain operands (see Section 5.1.2).
Any operand can, itself, be a parenthesized expression because a paren-
thesized expression is a form of block (as defined in Section 8.1), which is a
primary (as defined in Section 4.1). For example, the expression

X = (IF .ALPHA EQL O THEN X1 ELSE .X2)

is valid but the unparenthesized form is not. Again, the expression
+A EOL (NOT .B)

is valid, but the unparenthesized form is not.

5.1.5.2 The Order of Evaluation — As stated in Section 5.1.4, the order in
which operator-expressions are evaluated is largely undefined. By leaving the
order undefined, the language definition permits the compiler to choose an
order of evaluation that is efficient.

In most cases, the results of programs are not affected by the absence of a
defined order of evaluation. Consider, for example, the following expression:

o= 2%, + 3/.Y3

The absence of a defined order of evaluation does not affect the value assigned
to X because all possible orders of evaluation of this assignment (after the
operands are delimited by default parenthesization) produce the same value.

The rule near the beginning of Section 5.1.4, however, states that assignment
expressions, routine-calls, and control-expressions are evaluated in left-to-
right order. In some cases where the order of evaluation is important, this
rule provides the necessary ordering. Consider, for example, the following
example:

BETA = 2*R(.Y) + Q(.Z)

Suppose that R and Q are names of routines, and that the routines they
designate use the same data (for example, R sets a data segment that Q
fetches). Then it is important that the routines be called in the indicated
order. They are.

It must be said, however, that the example just given is not good program-
ming. It is legitimate for a routine-call to set or use data that is not mentioned
in the routine-call, but a dependence between two routine-calls in the same
expression is dangerously obscure.

Some expressions are invalid because they depend on an ordering that is
undefined. An example is the expression:

0 = X+ (M=.¥)3
It is not valid to assume that the contents of X will be fetched before it is set.
The value assigned to Q could be either the value of .X+.Y or the value of

2*.Y. Assuming that it was the first of the two values that was intended, the
example can be revised by breaking it into two assignments, as follows:

Q

3,
"

A7 A/ 2
[S

Ao
+ By

iHou

Computational Expressions

This version is valid because expressions that are separated by a semicolon
are always evaluated in sequence, one at a time.

The example just given was quite obviously bad programming. However, the
same problem can arise with certain routine-calls, and then the problem is
less obvious. As an example, suppose that the routine R contains, among
other things, the assignment expression:

(Y- Ao
ZATEER R T B

Now consider the expression:
0 = X + RO

This statement has the same problem as the earlier one; there is no rule that
specifies whether the operator that fetches X or the call on the routine R is
evaluated first.

5.1.5.3 Operations on Field Values in BLISS-16/32 — When all data segments
involved in a calculation occupy fullwords, the calculation is relatively easy to
program. Fullwords accomodate large values and assignment from one full-
word to another never modifies a value.

When a data segment that is smaller than a fullword is involved in a calcula-
tion, problems can arise, either through the assignment of a large value to the

OWN

+ 4
A
n

non .
L e
-

A
J

For purposes of discussion, assume that the programmer has a good reason for
restricting X to one byte. Since X does not occupy a fullword, it is extended
before being incremented and assigned to Y. And since X is UNSIGNED by
default, the extended value is 255 rather than -1. Thus the value of Y be-
comes, surprisingly, 256 rather than 0.

The program fragment under discussion does not violate any rules of
BLISS-16 or BLISS-32; it is valid. However, since it assigns a negative num-
ber, -1, to a name that is declared UNSIGNED by default, the program
fragment is certainly inconsistent.

The program can be fixed in either of the following ways:

¢ Change the numeric literal from -1 to 255. This change does not affect the
value assigned to Y, but it does make it clear that the programmer ex-
pects that result.

e Insert the SIGNED attribute to the declaration of X. This change causes
0 to be assigned to Y.

The choice between these changes depends entirely on the intentions of the
programmer and cannot be made by looking at this small part of the program.

Computational Expressions 5-13

Related problems can arise (in any dialect) from the use of field-references for
fields that are smaller than a fullword. These are discussed in Section
11.2.5.4.

5.2 Executable-Functions

5-14

The executable-functions are called “executable” to distinguish them from
the lexical-functions, which are described in Chapter 15. There are five kinds
of executable-functions, as follows:

standard-functions

supplementary-functions
condition-handling-functions (BLISS-16/32 only)
linkage-functions

machine-specific-functions

Each of these kinds of function is characterized in the following paragraphs.

The standard-functions are general-purpose functions; that is, they are re-
stricted to neither a specific area of system programming nor a specific com-
puter system. The standard-functions are just as fundamental to BLISS as
the operator-expressions. An example of a call on a standard-function is:

MAKC Xy WYy 0)

The value of this function is the contents of X, the contents of Y, or O,
whichever is greatest. The name MAX is predeclared as an executable-func-
tion, so the example just given can appear where MAX is undeclared. The
standard-functions are defined in this chapter (Section 5.2.2).

The supplementary-functions are designed for particular areas of system pro-
gramming. These functions are usually defined and documented in “pack-
ages’’. One such package consists of the character handling functions. An
example of a call on such a function is:

¥ = CH$RCHAR(.PTR3) i

This assignment reads a character from the position selected by the contents
of PTR3 and assigns it to X. The character handling functions are the only
supplementary-functions defined in this manual. However, it is anticipated
that other packages of supplementary-functions will be added to the language
in the future.

The condition-handling-functions are used for generating signals for unusual
events or conditions and for controlling the subsequent processing of a signal
(BLISS-16/32 only). These functions are defined in Chapter 17.

The linkage-functions are used in combination with some linkages (calling
sequences) to code routines in a more general way; for example, to code a
routine that can be called with different numbers of parameters in different
calls. The linkage-functions are defined in Section 13.6.

The machine-specific-functions are designed for specific computer systems.
Usually a machine-specific-function represents a single hardware instruction.
Such a function permits the use of the hardware instruction without a “break
out” to assembly language. The use of a machine-specific-function makes a

Computational Expressions

program machine-dependent. An example of the use of a machine-specific-
function is not given here. Such an example would be misleading without a
detailed description of the context in which it appeared. The use of machine-
specific-functions requires knowledge of both the hardware instruction set and
the optimization strategies of the compiler. Machine-specific-functions are
described in the respective BLISS User’s Guides.

5.2.1 Syntax

executable-function executable-function-name

({ actual-parameter, })

nothing
executable-
function-name { name
% name
actual-parameter expression

5.2.2 Semantics

The semantics of the executable-functions is nearly identical to that for oper-
ator-expressions (see Section 5.1). The only difference is that the operation to
be performed is specified by a name at the beginning of the executable-
function (for example, “MAX’’) instead of by an operator.

The semantics of the standard-functions are given in the following subsec-
tions. The semantics of some supplementary-functions, the character han-
dling functions, are given in Chapter 20. The semantics of the machine-
specific-functions are defined in the User’s Guide for each dialect.

5.2.2.1 SIGN and ABS Functions — The SIGN and ABS functions are used to
extract the sign and the absolute value, respectively, from a value. The func-
tions have the form:

{ams fee)

Either of these functions is a compile-time-constant-expression if its actual-
parameter is a compile-time-constant-expression. The values returned by
these functions are:

Function Value
SIGN(x) +1 ifx>0
0 ifx=0
-1 ifx<0
ABS(x) x ifx=0
-(x) ifx<O

Computational Expressions 5-15

5-16

Examples of the use of the SIGN and ABS functions are:

Example Value
SIGN(5) +1
ABS(5) +5
SIGN(-5) -1
ABS(-5) +5
SIGN(0) 0
ABS(0) 0

Observe that, in each of these examples,
SIGN(x)*ABS(x) EQL x

5.2.2.2 MAX and MIN Functions — The MAX and MIN functions are used to
select the largest and the smallest, respectively, from a set of values. The
functions have the form:

{MAX | MAXU | MAXA }
MIN | MINU | MINA § (el e2...)

The interpretation of the function itself is determined by the first three letters
of its name, as follows:

MAX select the largest value
MIN select the smallest value

The interpretation of the operands is determined by the fourth letter of the
function name as follows:

No fourth letter: Interpret operand values as signed values.
Fourth letter is U: Interpret operand values as unsigned values.
Fourth letter is A: Interpret operand values as addresses.

The value of the function is the largest or smallest of the values of the
operands, depending on the function name.

In both BLISS-16 and BLISS-32, the functions MAXU and MAXA are
equivalent, as are MINU and MINA. That is, the unsigned and address forms
of the MAX and MIN functions are equivalent. In BLISS-36, however, the
functions MAX (signed) and MAXA are equivalent, as are MIN and MINA.
This reflects a difference in the range of valid address values allowed by the
corresponding systems.

The distinction between the signed/unsigned and the address forms of the
functions is provided so that programmers can specify the desired interpreta-
tion of the values being operated on, in a both explicit and transportable
fashion.

Computational Expressions

Examples of the use of the signed and unsigned maximum and minimum
functions are:

Example Value
MAX(-1,0,1) 1
MAXU(-1,0,1) -1
MIN(-1,0,1) ' -1
MINU(-1,0,1) 0

These examples show the difference between the signed and unsigned func-
tions. The signed functions treat -1 (which is represented as a fullword of 1’s)
as a negative value, whereas the unsigned functions treat -1 as a large positive
value.

An example of the use of the address maximum and minimum functions is:

DWN
K: VECTORLI1OD1,
’

H o«

Mo

MAXACKLSD oY)

The assignment sets Z to the value of Y because OWN data segments are
allocated at increasing addresses.

5.2.2.3 The %REF Function — The %REF function provides temporary stor-
age for the value of an actual-parameter in a routine-call or executable-func-
tion. The function has the form:

%REF (el)

The function can be used only as an actual-parameter in a routine- call or
executable-function.

The function is evaluated as follows:
1. Allocate a temporary fullword and place the value of el in that fullword.
2. Use the address of the temporary fullword as the value of the function.

For purposes of discussion, suppose that a programmer has declared a routine
called RHO. The details of the declaration are not given here. All that matters
is that the routine has one parameter, which is the address of a given value,
and returns a result which, presumably, depends on the given value.

Suppose, now, that the value to be passed is not stored in a data segment but
must, instead, be calculated. Specifically, it is the value of the expression:
.X+1. It would not be correct to write:

Y o= RHOC,K+1) 3§

In this version, .X+1 would not be used as the given value (which was in-
tended), but rather as the address of the given value.

Computational Expressions 5-17

5-18

A correct solution to the problem is to declare and use a temporary data
segment name. However, the use of a temporary just to deal with a calculated
parameter is inconvenient. The %REF function provides a better solution, as
follows:

OWN

\II "'
¥ = RHOCZREF(.X+1))3

Observe that %REF is not an “undot” operation. The following calls are not
equivalent:

F X))
FOAREF (4 3))

The routine-call F(X) passes the address of X as the actual-parameter of the
routine F, while the second call passes the address of a temporary data seg-
ment that contains a copy of the contents of X.

5.2.3 Pragmatics

The cost of evaluating a typical executable function is much less than the cost
of evaluating a typical routine-call. The use of an executable-function usually
does not produce a routine call; instead, it is compiled into a few instructions
that are often designed precisely for the required operation. In contrast, a
routine-call usually requires the passing of parameters, the creation of a stack
frame, and the return of a result as well as the inevitable subroutine jump. In
fact, the similarity between an executable-function and a routine-call does
not extend much beyond the similarities in their syntax.

Computational Expressions

Chapter 6 Control Expressions

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Conditional-Expressions 0o 6-2
6.1.1 Syntax. oo e e e e e e e e e e 6-2
6.1.2 Restrictions Lo e e e e 6-2
6.1.3 Semantics Lo 6-2
6.1.4 Pragmatics.o oo 6-3

6.1.4.1 Nesting of Conditional Expressions 6-3

6.1.4.2 Used vs. Discarded Values 6-3

6.1.4.3 Complete vs. Incomplete Test Evaluation 6-4
Case-Expressionso e e e e e e e 6-4
6.2.1 Syntax. e e e e e e e e e e e e e e e e 6-5
6.2.2 Restrictions 0o e e e e e e e e e 6-5
6.2.3 SemantiCs v . v v e e e e e e e e e e e e e e e 6-6
6.2.4 Pragmatics. oL L0000 6-7
Select-Expressionso 0o 6-7
6.3.1 Syntax. e e e e e e e e e e e e e e 6-8
6.3.2 Restrictions oo e e e e e 6-9
6.3.3 Semantics oo e e e e e e e e e 6-9
Indexed-Loop-Expressions 6-10
6.4.1 Syntax. e e e e e e e e e e e e e e e e 6-10
6.4.2 Restrictions oo e e e e e 6-11
6.4.3 Defaultso e e e e 6-11
6.4.4 Semantics i e e e e e e e e e e e e 6-11
6.45 Pragmatics. o000 6-12
Tested-Loop-Expressions 6-12
6.5.1 Syntax. e e e e e e e e e e 6-13
6.5.2 Restrictions L0000 6-13
6.5.3 Semantics o e e e e e e e e e e e 6-13
6.5.4 Pragmatics. oo oo e e e e 6-13
Exit-Expressions.00 e e e e e e 6-14
6.6.1 Syntax. e e e e e e e e e 6-14
6.6.2 Restrictions 000w e e e e 6-14
6.6.3 Semantics o e e e e e e e 6-15

6.6.3.1 Leave-Expressions 6-15

6.6.3.2 Exitloop-Expressions. 6-15
6.6.4 Pragmatics.00 6-15
Return-Expressions 00 6-16
6.7.1 Syntax. e e e e e e e e e e e e e e 6-16
6.7.2 Restrictionso oo oo 6-17

6.7.3 SemantiCs vt e e e e e e e e e e e e e e e e 6-17

Chapter 6
Control Expressions

Early programming languages permitted unrestricted patterns of control flow,
and the logic of many programs was very difficult to follow. More recent
languages have introduced specialized and restricted patterns of flow, and
thus encourage the construction of programs that are better organized.

There are five fundamental kinds of control flow in BLISS: sequential, condi-
tional, iterative, subroutine, and condition handling. Sequential flow, a sim-
ple notion, is defined in Section 8.1.3 as part of the description of blocks.
Conditional and iterative flow is described in this chapter. Subroutine flow is
described in Chapter 12, and condition handling in Chapter 17.

Notable by its absence in BLISS is the familiar GO TO construct. Its absence
prevents the use of arbitrary patterns of flow. Programming without the GO
TO frequently requires more analysis of the problem, but usually results in a
clearer and more reliable program.

In BLISS, the constructs for conditional and iterative flow control are called
control-expressions. Because they are expressions, these constructs can have
values and can be nested within larger expressions.

The syntax diagram for control-expressions is:

conditional-expression
case-expression
select-expression
loop-expression
exit-expression
return-expression

control-expression

Loop-expressions are described under two categories: indexed-loops and
tested loops.

6-1

6.1 Conditional-Expressions

6-2

A conditional-expression performs a given test and then, depending on
whether or not the test is satisfied, evaluates the first or second of two given
expressions.

An example of a conditional-expression is:
IF X GTR XMAX THEN F(.%) ELSE G(.¥)3

In this example the contents of X is compared with a value XMAX. If .X is
greater than XMAX, then the routine F is called; otherwise, routine G is
called.

6.1.1 Syntax
conditional- IF test THEN consequence ELSE alternative
expression {
IF test THEN consequence
test
consequence expression
alternative

In addition to the syntactic rules just given, the following syntactic rule is
required:

An “ELSE alternative” that could be part of several conditional-expres-
sions is, in fact, part of the innermost of them.

An example of an expression to which this rule applies is:

IF +A EOL O THEN IF B EOL O THEN X = 5 ELSE ¥ = B3j
This expression is interpreted as:

IF .A EOL O THEN (IF .B EGL O THEN X = 5 ELSE X = B)3

6.1.2 Restrictions

A conditional-expression that lacks an “ELSE alternative” must not be used
in a context that requires a value.

6.1.3 Semantics

The satisfaction of a test depends on the low-order (rightmost) bit of the value
of the test. If the low-order bit is 1, the test is satisfied; otherwise, the test is
not satisfied.

Expressions used as test expressions are subject to an evaluation rule that is
more flexible (for optimization purposes) than the rule applied in other con-
texts. Specifically, the test-expression evaluation rule is:

Within a test expression, an expression that is not needed to determine the
value of the test expression is not necessarily evaluated.

Control Expressions

A test expression that is subject to this rule appears in the following condi-
tional-expression:

IF +A OR F(.B) THEN X = 0O

If the contents of A is 1 (true), then the value of the entire test expression is 1
(true) regardless of the value of F(.B). Consequently, the call on routine F
may not be evaluated. Writing the test in the reverse order does not change
the situation. (See Section 6.1.4.3.)

Given the preceding description of test evaluation, the interpretation for an
entire conditional-expression can be presented. It is:

1. Evaluate the test.

2. If the test is satisfied, evaluate the consequence and use that value as
the value of the conditional-expression.

3. If the test is not satisfied and if an alternative is present, evaluate the
alternative and use that value as the value of the conditional-expres-
sion. If an alternative is not present, the value of the expression is
undefined.

6.1.4 Pragmatics

6.1.4.1 Nesting of Conditional Expressions — Conditional expressions provide
a way to choose one of two mutually exclusive actions, depending on a speci-
fied test condition. The test, consequence or alternative may be any expres-
sion. It is common, for example, for the consequence or alternative to be a
sequence of expressions (written as a block) as in:

IF X EGL ©
THEN (¥ = .¥+1§ FO.¥)8 GO))
ELSE (GO)3 Y = ,¥Y-1)3

Control expressions can also be included in these expressions. For example:

IF (IF X EQL © THEN .Y ELSE F(,Y))
THEN
2 = Gy + B3

In this example, the following conditional-expression:
IF % EQL O THEN .Y ELBE F(.Y)
appears as the test expression of another, larger conditional-expression. The

inner test, “.X EQL 0”, determines which of the two expressions, “.Y” or
“F(.Y)”, is used as the test for the outer conditional.

6.1.4.2 Used vs. Discarded Values — Every BLISS expression has a value;
however, in some contexts that value is used and in others it is discarded. This
aspect of BLISS is discussed here because the conditional-expression is a good
example of an expression that is at home in both contexts. However, the
following discussion applies to the value of any kind of BLISS expression.

An example of a conditional-expression whose value is used is:
D = (IF .1 EOL ,J THEN 20 ELSE 30)3

Control Expressions 6-3

Suppose that .I and .J are equal; then 20, which is the value of the conse-
quence, becomes the value of the conditional-expression and is assigned to D.
Observe that, because the assignment expression is followed by a semicolon,
its value is discarded, but only after the assignment has been performed.

An example of a conditional-expression whose value is discarded is:
IF .1 EQL .J THEN D = 20 ELSE D = 30}

Suppose, again, that .I and .J are equal; then the evaluation of the conse-
quence causes 20 to be assigned to D and also causes 20 to be the value of the
conditional-expression. Since the conditional-expression is followed by a
semicolon, its value is discarded.

The two expressions just given are equivalent in function, and are close
enough in their cost that the choice between the two examples is ordinarily a
matter of programming style.

6.1.4.3 Complete vs. Incomplete Test Evaluation — As Section 6.1.3 stated, a
test may not be fully evaluated. Furthermore, different occurrences of the
same test may be evaluated in different ways. These variations reflect the fact
that the BLISS compiler performs a far-reaching analysis of the context in
which a test appears and then produces code that is optimized for that con-
text. For this reason, an expression that must be evaluated (because it sets
values or has other side effects) must not be part of a test.

If an assignment or routine-call must be evaluated, its value should be as-
signed to a temporary variable. Then the value of the temporary variable can
be used in the test expression. For example:

IF A OR F(.B) THEN X = 03}

can be rewritten as follows:

T = F(.B)3
IF «A OR T THEN X = 03

6.2 Case-Expressions

A case-expression evaluates an index and then uses the value of that index to
choose one expression to be evaluated from a set of expressions.

An example of a case-expression is:
CASE ,X+1 FROM -1 TO 8 OF

SET

[1d: F10)3
L2 70 41: F2()3
£33y, 7+ -11: F3()3
LINRANGED: Fa() s
[OUTRANGE 1= FS() 34
TES

6-4 Control Expressions

In this example, the value of .X+1 is used to choose one of five routines to be
called as follows:

Value of .X+1 Routine Called

F3
F4
F1
F2
F2
F2
F3
F4
F3
F4
(all other values) F5

O -1 T W S

6.2.1 Syntax

case-expression CASE case-index

FROM low-bound TO high-bound OF
SET

case-line

TES

case-line [case-label ,...] : case-action ;

single-value
low-value T'O high-value

- 1

case-labe INRANGE
OUTRANGE

case-ind.ex } expression
case-action
low-bound
high-bound
single-value compile-time-constant-expression
low-value
high-value

6.2.2 Restrictions

Every value within the range specified by the low-bound and high-bound
expressions must be accounted for exactly once in a case-expression. If an

Control Expressions 6-5

6-6

integer value in the range is not explicitly given, a case-action must be speci-

fied for INRANGE.

If the case-index can assume a value outside the specified range, a case-action
must be specified for OUTRANGE.

If the INRANGE case-label is used, it must appear after all case-labels of the

form:

single-value
or
low-value TO high-value

Thus the only case-label that can follow INRANGE is OUTRANGE.

6.2.3 Semantics

The matching of the case-index to a case-label determines the case-action to
be evaluated. The syntax provides four kinds of case-label. The following list
gives, for each kind of case-label, the condition under which a match occurs.

Case-Label

single-value

low-value T'O high-value

INRANGE

OUTRANGE

Condition for a Match

A match occurs if the values of the case-index
and the single-value are equal.

A match occurs if the value of the case-index
is in the range specified by the values of the
low-value and high-value expressions (that is,
the following signed comparisons hold: low-
value < case-index < high-value).

A match occurs if the value of the case-index
is in the range specified by the values of the
low-bound and high-bound expressions (that
is, the following signed comparisons hold: low-
bound < case-index < high-bound) and the
case-index does not match any other case-la-
bel.

A match occurs if the value of the case-index
is outside the range specified by the values of
the low-bound and high-bound expressions.

Given the preceding definition of matching, the interpretation of an entire
case-expression can be presented. It is:

1. Evaluate the case-index.

2. Evaluate the case-action in the case-line that contains the case-label
matched by the case-index.

3. Use the value of the case-action as the value of the case-expression.

The case-expression is designed for a special, very efficient implementation.
In order to make a decision about using a case-expression, a programmer
needs to understand its implementation. A brief discussion follows.

Control Expressions

The bounds and case-labels of a case-expression are all compile-time-con-
stant-expressions and can therefore be evaluated by the compiler. For this
reason, the compiler can prepare a transfer vector for use in the evaluation of
a case-expression. The transfer vector has one element for each value of the
case-index in the range from low-bound to high-bound. The first element of
the vector provides the address of the object code for the case-action that is
performed when the case-index is equal to low-bound. The second element
provides the address of the object code for the case-action that is performed
when the case-index is equal to low-bound plus one. And so on.

When a case-expression is evaluated during program execution, only a single
operation is required to get to the appropriate case-action. That is, the case-
index is used as an index into the transfer vector. Thus a case-expression does
not require a search through the case-labels.

6.2.4 Pragmatics

A case-expression is most useful when the case-index assumes values in a
small range. An example of the effective use of a case-expression is:
CASE ,TYPECODE FROM O TO 3 OF
SET
[0l: LITERAL ()]
[11: IDENTIFIER()
[271: KEYWORDC) 3
[31: PREDCL()S
TESS

This case-expression is used to choose the routine to be evaluated based on
the value of .TYPECODE. The data segment named TYPECODE contains a
code that is set earlier in the program. Since TYPECODE cannot assume a
value outside the specified range, a case-action is not given for OUTRANGE
and since each of the values within the range is associated with a specific case-
action, a case-action is not given for INRANGE.

Another example of a case-expression is:
CASE NUMBER FROM 1 TO 10 OF

8ET

[1:2+3+5,71: PRIME = ,PRIME + 13
[INRANGE1: NONPRIME = NONPRIME + 13
[OUTRANGE]: ERROR() 3

TEG S

This case-expression increments the counter PRIME if the contents of NUM-
BER is 1, 2, 8, 5, or 7. If the contents of NUMBER is 4, 6, 8, 9 or 10, the
counter NONPRIME is incremented. If the contents of NUMBER is outside
the specified range, an error routine is called.

6.3 Select-Expressions

A select-expression evaluates an index and then uses the value of that index to
choose one or more expressions to be evaluated. Two kinds of select-expres-
sions are defined for BLISS: one evaluates all expressions chosen by the index,
and the other only evaluates the first such expression.

Control Expressions 6-7

A select-expression differs from a case-expression in several important ways:
¢ Select-labels are evaluated at execution time.
* A range of values is not specified for the select-index.

* The select-index and select-labels can be interpreted as signed, unsigned,
or address values depending on the form of the select expression used.

An example of a select-expression, assuming the VAX-11/780 target system
for purposes of illustration, is:

SIZE=(SELECTONE .VALUE OF
SET
[-128 TO 1271: i
[-32768 TO 327671: 23
[OTHERWISE]: 4
TES) 3

"
a
9

In this example, the contents of VALUE is used to determine the number of
bytes of storage needed for its representation.

If the select-expression in this example is reprogrammed as a case-expression,
it requires a range from -32768 to 32767, and its transfer vector occupies 65536
16-bit words. For this reason, the case-expression is decidedly impractical for
this example. (The particular example used and the transfer-vector size cited
are not appropriate for all target systems, of course, but do convey the essen-
tial differences between select- and case-expression usage.)

6.3.1 Syntax

select-expression { SELECT I SELECTU | SELECTA }

SELECTONE | SELECTONEU | SELECTONEA

select-index OF
SET
select-line ...

TES

select-line [select-label ,...] : select-action ;

selector

low-selector TO high-selector
OTHERWISE

ALWAYS

select-label

select-index
select-action
selector expression
low-selector
high-selector

6-8 Control Expressions

6.3.2 Restrictions

The select-label ALWAYS cannot be used in an expression that begins with
SELECTONE, SELECTONEU, or SELECTONEA.

6.3.3 Semantics

The matching of the select-index to a select-label determines whether or not
the select-action in the select-line containing the select-label is evaluated.
The syntax provides four kinds of select-label. The following list gives, for
each kind of select-label, the condition under which a match occurs.

Select-Label Condition for a Match

selector A match occurs if the values of the select-index and
selector are equal.

low-selector TO A match occurs if the value of the select-index is in the
high-selector ~ range specified by the values of the low-selector and
high-selector expressions (that is, low-selector < select-

index < high-selector).

OTHERWISE A match occurs if a match has not previously occurred.
ALWAYS A match always occurs.

The keyword at the beginning of a select-expression consists of SELECT or
SELECTONE, followed by an optional added letter, U or A. The added letter
affects the matching of the select-index to a particular select-label. Specifi-
cally, it determines the kind of comparison, as follows:

No added letter: Use signed comparison.
Last letter is U: Use unsigned comparison.
Last letter is A: Use address comparison.

Given the preceding discussion of matching and keywords, the interpretation
for an entire select-expression can be presented. It is:

1. Evaluate the select-index.

2. Let the first select-line of the select-expression be the current select-
line.

3. Evaluate the select-labels on the current select-line to determine
whether at least one of them matches the select-index.

4. If a match is found, then evaluate the select-action of the current select-
line. Otherwise, go to Step 6.

If the select-expression is a form of SELECTONE, then go to Step 8.
6. If the current select-line is the last select-line, then go to Step 8.

Let the select-line that follows the current select-line be the new current
select-line and go to Step 3.

8. Use the value of the most recently evaluated select-action as the value
of the select-expression. If no select-action has been evaluated during

Control Expressions 6-9

this evaluation of the select- expression, use -1 as the value of the select-
expression.

In Step 3 of this interpretation, the select-labels in a single select-line may be
evaluated in any order. Furthermore, they are subject to partial evaluation in
the same way as a test in a conditional-expression (see Section 6.1.3). There-
fore, a select-label must not contain assignments or routine-calls that must be
evaluated because they have important side-effects.

6.4 Indexed-Loop-Expressions

6-10

A loop-expression repeatedly evaluates a given expression, the loop-body.
Loop-expressions are classified as indexed-loops (described in this section)
and tested-loops (described in the next section).

An indexed-loop has a loop-index that starts at a given value and is stepped
each time the loop cycles until a final value is reached. The loop-index not
only determines the number of cycles performed by the loop, but can also be
used as data in the calculations performed in the loop-body. An example of an
indexed-loop is:

OWN
Ve UECTORLL1OT,
SUM 3

SUM = OF

INCR I FROM O TO 9 DO
SUM = ,85UM + JUL.,I13

In this loop-expression, the loop-body is a single assignment-expression. The
assignment-expression is evaluated ten times, for the sequence of values of .I
as follows: 0, 1, 2, ..., 9. The effect of the loop is to place the sum of the
elements of the vector V in the data segment named SUM.

6.4.1 Syntax

loop-expression { indexed-loop-expre§sion }
tested-loop-expression

indexed-loop-

D exprossion {INCR | INCRU | INCRA | .
DECR | DECRU | DECRA loop-index
{ FROM initial} { TO final} { BY step }

nothing nothing nothing

DO loop-body

loop-index name

loop-body

! ,mtlal expression

final

step

Control Expressions

6.4.2 Restrictions

The value of the step expression in an indexed-loop-expression must be posi-
tive.

6.4.3 Defaults

The initial, final, and step expressions can be omitted in an indexed-loop-
expression. The following defaults apply:

Keyword Defaults

INCR FROM 0 TO +infinity BY 1
INCRU FROM 0 TO +infinity BY 1
INCRA FROM 0 TO +infinity BY 1
DECR FROM largest-signed-value TO 0 BY 1

DECRU FROM largest-unsigned-value @ TO 0 BY 1
DECRA FROM largest-address-value TO 0 BY 1

The default “+infinity” for INCR, INCRU, and INCRA loop-expressions
means that no end test is made if no final expression is given. The “largest
values” referred to are the maximum values accommodated by a signed or
unsigned fullword, or the maximum address value provided, respectively, on
the target system.

6.4.4 Semantics

The loop-index is implicitly declared to be a LOCAL name for the scope of the
loop-body. This implicit declaration supersedes any previous declaration for
that name throughout the indexed-loop. The MAP declaration, described in
Section 10.10, can be used to provide a structure attribute for the loop-index.

The keyword at the beginning of an indexed-loop-expression is INCR or
DECR, followed by an optional added letter, U or A. The added letter affects
the comparison of the index to the first and final expressions. Specifically,

No added letter: Use signed comparison.
Last letter is U: Use unsigned comparison.
Last letter is A: Use address comparison.

Given the preceding discussion of indexes and keywords, the interpretation for
an entire indexed-loop-expression can be presented. It is:

1. Set the value of the loop-index to the value of the initial expression.

2. Evaluate the step and final expressions and save the values of these
expressions.

3. If there is no final expression (so that “+infinity” is assumed by de-
fault), skip to Step 5. Otherwise, perform the end test. The end test is
satisfied if:

a. The keyword is INCR, INCRU, or INCRA, and the value of the loop-
index is greater than the saved value of the final expression; or,

Control Expressions 6-11

b. The keyword is DECR, DECRU, or DECRA and the value of the
loop-index is less than the saved value of the final expression.

4. If the end test is satisfied, evaluation of the loop-expression is complete.
Use -1 as the value of the loop-expression.

Evaluate the loop-body.

6. If the keyword is a form of INCR, add the saved value of the step
expression to the loop-index. If the keyword is a form of DECR, subtract
the saved value of the step expression from the loop-index. Go to Step 3.

ot

6.4.5 Pragmatics

The improper declaration of a loop-index is a common programming error. An
example is:

SUM = 03
INCR I FROM O TO 9 DO
BEGIN
L.aocCAL
I3
SUM = +8UM + JUL,I13
END 3

The preceding program fragment is incorrect because I is used as a loop-index
and then ‘“blocked off”’ from use in the loop-body by an explicit declaration of
I as LOCAL. The name I in .V[.I] refers to a data segment that is allocated by
the explicit declaration, not to the implicit data segment that contains the
loop-index. The correct version of this example appears at the beginning of
this section (Section 6.4).

6.5 Tested-Loop-Expressions

6-12

A tested-loop-expression contains a test expression that is evaluated once
during each loop cycle. The test expression determines whether or not re-
peated evaluation of the loop-body continues.

In a pre-tested loop, the test is made at the beginning of each cycle. If the test
is satisfied, then the loop-body is evaluated and a new cycle begins; otherwise,
evaluation of the loop-expression is complete. An example of a pre-tested-loop
is:
WHILE .PTR NEQ O DO

BEGIN

SUM = LISTL.PTR,CONTIS

PTR = LISTL.PTR,LINKI;

END 3
In this example, the loop-body is the BEGIN-END block, with its two assign-
ment-expressions. Each cycle of the loop begins with a test of the contents of
PTR. If the value is not 0, then the block is evaluated and a new cycle begins;
otherwise, evaluation of the loop-expression is complete.

A post-tested-loop differs from a pre-tested-loop only in the position of the
test. In a post-tested-loop, the test is evaluated at the end of each cycle.

Control Expressions

6.5.1 Syntax

tested-loop-
expression { pre-tested-loop }
post-tested-loop
WHILE)
pre-tested-loop { UNTIL } test DO loop-body
)) WHILE
post-tested-loop DO loop-body { UNTIL } test

6.5.2 Restrictions

The test in a pre-tested-loop or post-tested-loop is subject to the same evalua-
tion rules as the test in a conditional-expression, described in Section 6.1.3.
Assignments or routine-calls that must be evaluated because they set values
or have other side effects must not be included as part of a test.

6.5.3 Semantics

The interpretation of a pre-tested-loop is:

1.
2.

Evaluate the test.

Examine the test clause (that is, the “WHILE test” or “UNTIL test”).
The test clause is satisfied if the keyword is WHILE and the low-order
bit of the test is 1 or if the keyword is UNTIL and the low-order bit of
the test is 0.

If the test clause is satisfied, evaluate the loop-body and return to
Step 1.

If the test clause is not satisfied, use the value -1 as the value of the
loop-expression.

The interpretation of a post-tested loop is:

1.
2.
3.

Evaluate the loop-body.
Evaluate the test.

Examine the test clause. If the test clause is satisfied, as defined in Step
2 of the interpretation of the pre-tested-loop, return to Step 1.

If the test clause is not satisfied, use the value -1 as the value of the
loop-expression.

6.5.4 Pragmatics

The keywords WHILE and UNTIL are used to determine the continuation of
a loop. If WHILE is used, then the loop continues if the low bit of the test

Control Expressions 6-13

expression value is 1. If UNTIL is used, the loop continues if the low bit of the
test expression is 0. Thus:

WHILE test is equivalent to UNTIL NOT (test)

The most fundamental form of loop is one that begins with:
WHILE 1 DO
Such a loop could cycle indefinitely since the loop test is always satisfied.

Evaluation of the loop can be ended by an exit-expression (see Section 6.6) or
a return-expression (see Section 6.7) that is executed within the loop-body.

6.6 Exit-Expressions

6-14

An exit-expression gives three items of information: a command to end the
evaluation of a block, the label of the block to which the command applies,
and optionally a value for the designated block. An example of an exit-expres-
sion is:

LEAVE ALPHA WITH .X-13

This expression must occur in a block that is labeled ALPHA. It causes
evaluation of that block to end and provides the value of .X-1 as the value of
that block. The labeling of blocks is described in Section 8.1.

6.6.1 Syntax

exit-expression { leqve-expression' }
exitloop-expression
leave-expression LEAVE label { WIT,H exit-value}
nothing

exitloop-expression | EXITLOOP { eXit'Yalue}
nothing

label name

exit-value expression

6.6.2 Restrictions

A leave-expression must be contained in a block labeled by the same label
that appears in the leave-expression.

An exitloop-expression must be contained in a loop-expression.

Control Expressions

April 1983

If an exit-expression applies to an expression whose value is used, then the
exit-expression must contain an exit-value.

6.6.3 Semantics

The semantics of the two kinds of exit-expression is presented in the following
sections.

6.6.3.1 Leave-Expressions — The interpretation of a leave-expression is:

1. If an exit-value is given, evaluate the exit-value and use that value as
the value of the labeled-block.

If an exit-value is not given, the value of the labeled-block is undefined.

3. End the evaluation of the labeled-block designated by the label of the
leave-expression.

N

6.6.3.2 Exitloop-Expressions — The interpretation of an exitloop-expression
is: :

1. If an exit-value is given, evaluate the exit-value and use that value as
the value of the loop-expression.

2. If an exit-value is not given, the value of the loop-expression is unde-
fined.

3. End the evaluation of the innermost loop.

6.6.4 Pragmatics

An exitloop-expression is a special case of a leave-expression that leaves the
innermost containing loop-expression. An exitloop-expression is convenient
because it does not require the use of a label.

An example of an exitloop-expression appears in the following program frag-
ment:
OWN
X: VECTORL101,
ZEROFLAGS
ZEROFLAG = 03
INCR I FROM O TO 9 DO
IF JXL[.I1 EQL ©
THEN (ZEROFLAG = 13 EXITLOOP)3

The elements of the vector X are examined to determine if there is an element
whose contents is 0. If an element containing 0 is found, then ZEROFLAG is
set to 1 and evaluation of the loop-expression is ended by the EXITLOOP.
Evaluation of the loop ends when the first zero is found; the elements of the
vector following the first element containing 0 are not examined.

Control Expressions 6-15

An example of a leave-expression appears in the following program fragment:

OWN

AYZ1 ARRAYL10,201,

JEROFLAGS
LABEL

L3
ZEROFLAG = 0O} ' Initialize to no zeros found
L: BEGIN

INCR I FROM © TO 9 DO

INCR J FROM O TO 19 DO

IF JXYZL0,14+.41 EQL ©
THEN (ZEROFLAG = 13 LEAVE L)
END 3

When the leave-expression is evaluated, it ends evaluation of two loops: the
inner loop with index J and the outer loop with index I.

The value of an exit-expression can be used to give a value to a loop. An
example of this use of an exit-expression appears in the following program
fragment:

OWN

VALBUF: VECTORL101,
BUFLENS

e

BUFLEN = 1+
BEGIN
DECR J FROM 9 TO O DO
IF WWALBUFL.J1 NEQ O THEN EXITLOOP .J
END 3

Assume that the initial elements of VALBUT contain non-zero values, and the
remaining elements contain zero. BUFLEN is the number of non-zero values
in VALBUF. Observe that if a non-zero value is found then the exitloop-
expression ends the evaluation of the loop. If the buffer is all zeros, the
evaluation of the loop runs to completion and the loop value is -1. In both
cases, the value returned is 1 less than the desired numbt\ar of values.

6.7 Return-Expressions

A return-expression is used to end the evaluation of a routine and send control
back to the point at which the routine was called.

6.7.1 Syntax

return-expression RETURN { retur.ned-value}
nothing

returned-value expression

6-16 Control Expressions

6.7.2 Restrictions

A return-expression in a routine that does not have the NOVALUE attribute
must have a returned-value.

6.7.3 Semantics
The interpretation of the return-expression is:

1. If the return-expression has a returned-value, evaluate the returned-
value and use that value as the value of the routine-body.

2. End the evaluation of the routine-body.

Discussion of return-expressions is presented in the sections on the NO-
VALUE attribute (Section 9.10) and routine-declarations (Section 12.2).

Control Expressions 6-17

Chapter 7 Constant Expressions

7.1

7.2

Compile-Time Constant Expressions 7-1
701 Syntax. oo e e e e e e e e 7-3
7.1.2 Restrictions oo o e e e e e e 7-3
7.1.3 Semantics o o e e e e e e e e e e 7-4
Link-Time Constant Expressions 7-4
7201 Syntax. e e e e e e e e e e e e e e e 7-5
7.2.2 Restrictionso oo e e e e e 7-5

723 SemantiCs v v v v e e e e e e e e e e e e e e e e 7-6

Chapter 7
Constant Expressions

A constant expression is an expression that can be evaluated before program
execution begins. The practical and efficient implementation of BLISS re-
quires that constant expressions be used in certain contexts, as specified in
the syntax diagrams. An expression is a constant expression if certain restric-
tions are met, and those restrictions are given in this chapter.

There are two kinds of constant expression. The compile-time constant ex-
pression is the more heavily restricted of the two, and can be evaluated during
the compilation of the module in which it appears. The link-time constant
expression includes the compile-time constant expression as a special case,
and can be evaluated by the compiler, the linker, and the operating system
working together.

This chapter has two sections, one for each kind of constant expression.

7.1 Compile-Time Constant Expressions

This section defines compile-time-constant-expressions. The definition as-
sumes the definition of expressions given in the previous chapters and then
imposes restrictions. The restrictions are designed to permit a compile-time
constant expression to be evaluated during the compilation of the module in
which it appears. When the compiler encounters a compile-time constant
expression, it evaluates that expression and makes use of its value in compil-
ing efficient object code.

Constant values known to the compiler are required in several places in
BLISS in order to give a reasonable interpretation to another language fea-
ture. For example, in order for the compiler to allocate static storage for plits,
the actual sizes of all components must be known — including any repetition
counts. The same consideration applies to the sizes of other static storage
declarations, such as an own-declaration.

In other cases, requiring constant values assures that an efficient implementa-
tion can be provided by the compiler. For example, requiring that all LOCAL
(and STACKLOCAL) storage allocation is of constant size and therefore

7-1

known to the compiler assures that storage allocation can be done efficiently
and that LOCAL data segments can be addressed efficiently.

Some simple examples of compile-time constant expressions are:

3

3 % 15 - 4

7 + WC'A’

MAX(3, 7 3%15-4)

Compile-time constant expressions often involve names that are declared

LITERAL; for example:
LITERAL

REG
STZE

12

3
a7

uon

BEGIN
OWN X: VECTORCMAX(SIZE »3)+114%
REGISTER A = REGS

END

Wherever the definition of BLISS requires a compile-time constant expres-
sion, the syntactic name

compile-time-constant-expression

is used in the appropriate syntax diagram. There are quite a few contexts that
require compile-time constant expressions, and they are scattered through the
language. For convenience, a complete list follows.

A compile-time constant expression must be used as
e The replicator in a plit (Chapter 4)

¢ The low-bound, high-bound, single-value, low-value, and high-value ex-
pressions in a case-expression (Chapter 6)

® The boundary expression in an alignment-attribute (Chapter 9)

¢ The ctce-access-actual in a preset-attribute of a data-declaration (Chap-
ter 9)

¢ The bit-count in a range-attribute of a literal- or external-literal-declara-
tion (Chapter 9)

¢ The register-number in a register-declaration (Chapter 10)

e The sign-extension-flag in a field-selector (Chapter 11)

® The structure-size in the declaration of a structure-name (Chapter 11)
¢ The allocation-actual parameter in a structure-attribute (Chapter 11)
® The field-component in a field-declaration (Chapter 11)

e The register-number in a linkage-option (Chapter 13)

e The literal-value in a literal-declaration (Chapter 14)

e Certain parameters in lexical-functions (Chapter 15)

¢ The lexical-test in a lexical-conditional (Chapter 15)

7-2 Constant Expressions

e The compiletime-value in a compiletime-declaration (Chapter 15)
e The level value in an OPTLEVEL module-switch (Chapter 19).

7.1.1 Syntax

compile-time-constant-expression expression

7.1.2 Restrictions

These restrictions apply to an expression after any macro-calls in the expres-
sion have been expanded.

A compile-time-constant-expression must be one of the following expressions:
1. A numeric-literal.
2. A string-literal.
3. A name that

a. Is declared in any bound-declaration except an EXTERNAL literal-
declaration (as described in Chapter 14), and

b. Is bound to a value that is given by a compile-time-constant-expres-
sion.

4. A structure-reference that yields a compile-time-constant-expression
when it is expanded (as described in Chapter 11).

5. A block that has a compile-time-constant-expression (and nothing else)
as its body.

2}

. An operator-expression that
a. Is not a fetch-expression or an assignment-expression and

b. Has a compile-time-constant-expression as each of its operands.

-3

. An operator-expression that has the form:

el {rela} 2

In these forms, rela is one of the relational operators for addresses
(EQLA, NEQA, and so on). Both el and e2 must be link-time-constant-
expressions; furthermore, their values must be addresses that are rela-
tive to the same program section, external data segment, or external
routine name.

8. An executable-function that

a. Is the ABS function, the SIGN function, or one of the max or min
functions, and

b. Has a compile-time-constant-expression as each of its parameters.

Constant Expressions 7-3

9. A supplementary-function that satisfies certain restrictions. Those re-
strictions are not given here but instead appear as part of the definition
of each supplementary-function. (For example, Section 20.2.1.1 states
that the CHSALLOCATION function is a compile-time-constant-ex-
pression if its parameters are compile-time-constant-expressions.)

10. A conditional-expression that
a. Has a test that is a compile-time-constant-expression, and

b. Has a consequence or alternative that is a compile-time-constant-
expression, depending on whether the test is satisfied or fails.

11. A case-expression that
a. Has a case-index that is a compile-time-constant-expression, and

b. Has at least one case-action that is a compile-time-constant-expres-
sion; namely, that case-action that is chosen by the value of the
case-index.

7.1.3 Semantics

A compile-time-constant-expression is evaluated during the compilation of
the module in which it appears. In all other respects, its interpretation is the
same as that for an unrestricted expression (see Chapters 4, 5, and 6).

7.2 Link-Time Constant Expressions

7-4

This section defines link-time-constant-expressions. The definition assumes
the definition of expressions given in the previous chapters, and then imposes
restrictions. The definition of link-time constant expressions includes the
compile-time constant expressions as a special case. The restrictions on a
link-time constant expression are designed to permit the expression to be
evaluated by the compiler, the linker, and the operating system before the
value is needed for program execution.

The need for link-time constant expressions arises in two ways:

¢ A name that designates storage in a program section is specified as an
offset, not a full, absolute address, by the compiler. The absolute address
cannot be determined until link time, when the program sections are
allocated and their base addresses are determined.

¢ A name that is declared EXTERNAL is entirely undetermined at com-
pile time because its original declaration is in another module. Its offset,
to say nothing of its absolute address, cannot be determined until link
time, when the module in which the GLOBAL declaration of the name
appears is present.

A simple example of the use of a link-time constant expression is contained in
the following program fragment:

OWN X: VECTORL1O13

OWN ALPHA: INITIAL(XEZ21)3

Constant Expressions

During compilation, the final value of X is not known; it is expressed as an
offset in the OWN program section. Only at link time is it possible to deter-
mine the absolute address of X, to evaluate X[2] (the address of the third
element of X), and, finally, to supply the initial value for ALPHA.

Wherever the definition of BLISS requires a link-time constant expression,
the syntactic name '

link-time-constant-expression

is used in the appropriate syntax diagram. There are five contexts in which a
link-time constant expression is required; they are:

o The plit-expression in a plit (Chapter 4)

e The plit-expression in an initial-attribute of an own- or global-declaration
(Chapter 9)

e The preset-value in a preset-attribute of an own- or global-declaration
(Chapter 9)

e The data-name-value in a GLOBAL bind-data-declaration (Chapter 14)

e The routine-name-value in a GLOBAL bind-routine-declaration (Chap-
ter 14).

7.2.1 Syntax

link-time-constant-expression expression

7.2.2 Restrictions

These restrictions apply to an expression after any macro-calls in the expres-
sion have been expanded.

A link-time-constant-expression must be one of the following expressions:
1. A compile-time-constant-expression.
2. A plit. '
3. A name that is declared as one of the following:

a. OWN, GLOBAL, EXTERNAL, or FORWARD. (These are used for
names of permanently allocated data segments.)

b. ROUTINE, GLOBAL ROUTINE, EXTERNAL ROUTINE or FOR-
WARD ROUTINE. (These are used for names of routine segments.)

c. EXTERNAL LITERAL. (This is used for names of literals that are
bound in other modules.)

4, A name that
a. Is declared by a bound-declaration (as described in Chapter 14), and

b. Is bound to a value that is given by a link-time-constant-expression.

Constant Expressions 7-5

7-6

5. A structure-reference that yields a link-time-constant-expression when
it is expanded (as described in Chapter 11).

6. A block that has a link-time-constant-expression (and nothing else) as
its body.

7. An operator-expression that has the form:

el{j} e2

In these forms, el must be a link-time-constant-expression and e2 must
-be a compile-time-constant-expression.

8. An operator-expression that has the form:

el {rela} 2

In these forms, rela is one of the relational operators for addresses
(EQLA, NEQA, and so on). Both el and e2 must be link-time-constant-
expressions; furthermore, their values must be addresses that are rela-
tive to the same program section, external data segment, or external
routine name.

9. A supplementary-function that satisfies certain restrictions. Those re-
strictions are not given here but appear as part of the definition of each
supplementary function. (For example, Section 20.2.2.1 states that the
CHSPTR function is a link-time-constant-expression if its first parame-
ter is a link-time-constant-expression and its remaining parameters are
compile-time-constant-expressions.)

7.2.3 Semantics

A link-time-constant-expression is evaluated during the compilation, linking,
and loading of the module in which it appears. In all other respects, its
interpretation is the same as that for an unrestricted expression (see Chapters
4, 5, and 6).

The restrictions presented above seem complicated, but they express the fol-
lowing simple idea:

A link-time-constant-expression is
* Any compile-time-constant-expression,
¢ A data segment name or external name,

* A data segment name or external name modified by adding or subtracting
a constant value (using + and -), or

¢ The result of comparing or taking the difference of two link-time-con-
stant-expressions that represent addresses in the same program section or
relative to the same external name (using the relational operators for
addresses).

Constant Expressions

Chapter 8 Blocks and Declarations

8.1

8.2

Blocks. e s 8-1
8.1.1 Syntax. e e e e e e e e e e e e 8-2
8.1.2 Restrictlons v v v o e e e e e e e e e e e 8-2
8.1.83 Semantics v e e e e e e e e e e e e e 8-3
8.1.4 DISCUSSION . . . + v v v e e e e e e e e e e e e e e e 8-3
Declarations. e e e e e e e e e e e e e 8-4
8.2.1 Syntax. e e e e e e e e e 8-5
8.2.2 Restrictions . . . « v v v v v e e e e e e e e e e e e e e 8-5
8.2.3 SemantiCs v e e e e e e e e e e e e 8-6

8.2.4 DISCUSSION . . .+ v v v e e e e e e e e e e e e e e e e e e 8-6

Chapter 8
Blocks and Declarations

Blocks and declarations are the fundamental structural features of BLISS.
They are interdependent and complementary. A block is used to gather a
sequence of declarations and expressions into a single construct. In contrast, a
declaration is used to distribute a single set of information to many places in a
block: To each place where the declared name is used.

This chapter has two sections. One describes blocks, and the other describes
declarations at the most general level. Later chapters describe the specific
types of declarations in detail.

8.1 Blocks

On the inside, a block can contain a long and complicated sequence of decla-
rations and expressions. From the outside, that same block is a single syntac-
tic unit that has a single value. In this way, blocks provide for the large-scale
structuring of a program.

Blocks need not be complicated. They are often used to specify the order in
which operators are to be evaluated; for example:

2 (,A-1)
In this expression, “(.A-1)" is a block. It is used to show that the difference of

.A and 1 should be calculated before multiplication by 2. This block is the
simplest kind of block, a parenthesized-expression.

In some cases, a block is used to gather several expressions together so that
they are evaluated as a unit; for example:

IF +ALPHA NEQ O

THEN
BEGIN
Q1 = ,ALPHA*,5153
Q2 = JALPHA*,823
END 3

An equivalent way of writing this block is:
IF JALPHA NE® O THEN (01 = ,ALPHA*,813 02 = ,ALPHA*,523);

8-2

The block in these examples is a compound-expression; that is, a block that
contains one or more expressions but does not contain a declaration. The
choice between parentheses and the BEGIN-END pair is entirely a matter of
appearance and readability.

Finally, a block can be used to gather together a sequence of declarations and
expressions of arbitrary length and complexity.

8.1.1 Syntax

labeled-block
block { unlabeled-block}
labeled-block {label : } ... unlabeled-block
label name

) BEGIN block-body END
unlabeled-block { (block-body) }

block-body { gg;:}l]a};agtion }
1

{ block-action ... }
nothing

{ block-value }

nothing
block-action expression ;
block-value expression

A block immediately contains a given construct (such as a name or a declara-
tion) if it is the smallest block that contains the given construct.

A compound-expression is a block that does not immediately contain any
declarations.

A parenthesized-expression is a block that has the form:

(expression)

8.1.2 Restrictions

The label in a labeled-block must be declared by a label-declaration (see
Section 18.4).

A block that appears in a context that requires a value must contain a block-
value expression.

A block must not be empty; that is, it must contain at least one declaration,
block-action, or block-value.

Blocks and Declarations

8.1.3 Semantics

Consider, first, a block whose evaluation runs to completion without being
prematurely ended by, for example, a leave-expression. The block is evalu-
ated in three steps, as follows:

1. Process the declarations (if any).

2. Evaluate the block-actions (if any) in the order in which they are
written.

3. Evaluate the block-value expression (if any).

If the block has a block-value expression, then the value of that expression is
the value of the block; otherwise, the value of the block is undefined and an
attempt to use that value is invalid.

Most of the processing of declarations is performed before program execution
begins. For example, the information in an OWN declaration is used by the
compiler and linker to allocate storage, provide an initial value, and so on. In
a few cases, the processing of a declaration requires run-time calculations. For
example, the value in a BIND declaration can be given by an expression that
must be evaluated each time the block is entered.

The evaluation of block-actions in order, one after another, is the basis for
sequential flow of control. It is valid to assume that the evaluation of a block-
action is completed before the evaluation of the next block-action begins. In
the course of optimization, the compiler alters the order of some calculations,
but never in a way that affects the results.

In BLISS the block-action plays a role similar to the role of the “‘statement”
in other high level languages. The semicolon at the end of a block-action has
the syntactic role of separating the block-action from the next component of
the block. In addition, it has the semantic effect of discarding the value of the
expression. Thus it is valid to use an expression whose value is undefined as
the expression in a block-action.

Consider, next, a block that does not run to completion. Such a situation
arises because of a return-expression, leave-expression, or exitloop-expression
that is contained in the block. In this situation, the value of the block is the
value supplied by the return-expression, leave-expression, or exitloop-expres-
sion. If no value is supplied, then the value of the block is undefined.

8.1.4 Discussion

An example of a block is contained in the following conditional-expression:

IF .0 EQL ©
THEN
BEGIN
LocaL
TEMP 3
TEMP = X3
o= WYi
Yo o= JTEMPS
END 3

The block is evaluated if the contents of Q is 0.

Blocks and Declarations 8-3

The block in this example begins with one declaration, continues with three
block-actions, and does not contain a block-value expression. The declaration
describes a data segment named TEMP, which is allocated for use in this
block only. The block actions are all assignments; they exchange the contents
of X and Y. Clearly, it is important, in this example, that the assighments are
performed in the order written.

The entire example is an expression (a conditional-expression) followed by a
semicolon. Therefore it is a block-action and is part of some larger block (not
shown).

8.2 Declarations

A declaration provides information about the block that contains it. Usually,
the information affects the interpretation of one or more names that are used
in the block. Thus, although the declaration does not directly cause any
action, it does affect the interpretation of the block by specifying information
about the names that are declared.

In the simplest case, the information provided by a declaration is just a single
keyword; for example,
OWN

specifies that X is an OWN name.

Sometimes a declaration gives some of the attributes that are described in
Chapter 9. For example,

GLOBAL
DELTA: VECTORCI1201 INITIAL(REP 120 OF (-1))3

specifies that DELTA is a GLOBAL name and that it has the given structure-
and initial-attributes.

In other cases, a declaration can give even more information. For example,

GLOBAL ROUTINE EXCH(X,¥): NOVALUE =
BEGIN
LOCAL TEMP3;
TEMP = . X3

AV - \oE
LA R

WY = ,TEMP}

END
specifies that EXCH is a global routine-name, that it has the novalue-attrib-
ute, that it has the formal-name list (X,Y), and that it designates the routine
given in the BEGIN-END block.

A declaration applies to those occurrences of a name that are within its scope.
In the example just given, the declaration

LOCAL TEMP;
applies only to the occurrences of TEMP within the BEGIN-END block. The

example is part of a module (not shown) but any other use of TEMP in that
module lies outside the scope of the local-declaration in the example.

8-4 Blocks and Declarations

8.2.1 Syntax

data-declaration
structure-declaration
field-declaration
routine-declaration
linkage-declaration
‘enable-declaration
bound-declaration
compiletime-declaration
macro-declaration
require-declaration
library-declaration
psect-declaration
switches-declaration
label-declaration
builtin-declaration)

declaration

undeclare-declaration

The syntax diagrams for the specific kinds of declarations are given in later
chapters. With few exceptions, however, each kind of declaration declares a
user-chosen symbol as a specific kind of name (data-segment name, structure-
definition name, routine name, etc.), and generally provides additional infor-
mation about that name.

A given name can be used more than once in a module and can have different
declarations in different places. The declaration that applies to a given use of
a name governs that name. To find the declaration that governs a given use of
a name, proceed as follows:

Start at the given use of the name and scan backwards through the module.
If the end of a block is encountered, skip over everything contained in that
block. The first declaration of the given name that is encountered during
this scan is the desired declaration.

One declaration of a name can govern many uses of the name. The part of a
module that is governed by a declaration is the scope of that declaration.

8.2.2 Restrictions

Every use of a name must be governed by an explicit declaration. The prede-
clared names (see Appendix A) are an exception to this rule; they can be used
without being explicitly declared.

Two declarations of the same name must not be immediately contained in the
same block.

The two restrictions just given are subject to some exceptions when UNDE-
CLARE declarations are used (see Chapter 18).

A name is declared as global when its declaration begins with the keyword
GLOBAL. A name must not be declared global more than once in a program.

Blocks and Declarations 8-5

8.2.3 Semantics

A declaration supplies the following information about each occurrence of a
name that it governs:

1. The one or more keywords with which the declaration begins.
2. The attributes that appear in the declaration of the name.

. 1. 2
3. Other, specialized, information that is included in certain kinds of dec-
laration, such as the routine-body in a routine-declaration, or the
bound-value in a bind-declaration.

Most of the information supplied by the declaration is processed by the com-
piler. For most declarations, part of the processing defines a value for the
declared name. For example, when an own-declaration is processed, an ad-
dress offset is associated with the name, and that address-offset is bound (by
the linker) to the address of a data segment.

8.2.4 Discussion

As defined in Section 8.2.1, the scope of a declaration is the part of a module
that is governed by the declaration. An example of scopes is given in the
following diagram:

BEGIN

QN l«—— Block A

N
L 2K

t
t
Pl
9

=

ROUTINE &1 =

BEGIN

LocaL - Block B
PANR:
As

veelCaloulation #1)

END 3§

v (Calcoculation #2)

BEGIN

MACRO Y = O %3

ves(Caloulation #3) - Block C

END

vee(Caleulation #4)

END

8-6 Blocks and Declarations

The three blocks in this example are enclosed in boxes that are identified as
A, B, and C for convenience of discussion. Block A designates the entire
example (including the contents of Block B and Block C). The details of the
calculations performed by the example block are not important, so they are
omitted. The places where names could be used in calculations are called
Calculation #1, Calculation #2, and so on.

The example contains seven declarations of names. The scopes of the declara-

tions are:
Declaration

(in Block A)
(in Block A)
(in Block A)
(in Block A)
(in Block B)
(in Block B)
(in Block C)

< N

Scope of Declaration

Block A except Block B
Block A except Block C
Block A
Block A
Block B
Block B
Block C

Another way to express this information is to show the declaration that
governs each name in each of the calculations, as follows:

Use of Name
In Calculation #1

N < e

S1

g

In Calculation #2

P> N <

In Calculation #3
X
Y
Z
S1
A

In Calculation #4

Declaration of Name

LOCAL (Block B)
OWN (Block A)
OWN (Block A)
ROUTINE (Block A)
LOCAL (Block B)
OWN (Block A)
OWN (Block A)
OWN (Block A)
ROUTINE (Block A)
(undeclared)

OWN (Block A)
MACRO (Block C)
OWN (Block A)
ROUTINE (Block A)
(undeclared)

(Same as in Calculation #2)

Blocks and Declarations 8-7

8-8

A second example of scope is:

BEGIN <«——— Block A
OWN
Wy
\II ;
ROUTINE S2 (X)) = X + 1§ (= Block B
ROUTINE 83 (XY N) =) Block C
BEGIN -t Block D
MAP

Y: REF VECTORS
K= 03

DECR I FROM N TO O DO

PR G A A A - Block E

END 3

TR}

END

The blocks in this example are labeled in the same way as in the previous
example. Three of the blocks are implicit; that is, they are assumed to exist
even though a BEGIN-END or parenthesis pair is not used. Specifically,
Blocks B and C are the implicit blocks that each surround the formal-names
and the routine-body of a routine-declaration. Block E is the implicit block
that surrounds the body of a loop.

This example contains ten declarations. Five of the declarations are implicit.
Specifically, the formal-name X is implicitly declared in Block B; the formal-
names X, Y, and N are implicitly declared in Block C; and the loop-index I is
implicitly declared in Block E. The scopes of the declarations are:

Declaration Scope of Declaration
X (in Block A) Block A except Blocks B and C
Y (in Block A) Block A except Block C
S2 (in Block A) Block A

X (in Block B) Block B

S3 (in Block A) Block A

X (in Block C) Block C

Y (in Block C) Block C except Block D
N (in Block C) Block C

Y (in Block D) Block D

I (in Block E) Block E

Unlike all other declarations, the MAP declaration redeclares a name; that is,
it establishes a new set of attributes to be used with a previously declared
data segment name. Thus, the two declarations of Y in Blocks C and D refer
to the same data segment.

Blocks and Declarations

Chapter 9 Attributes

April 1983

9.1

9.2

9.3

9.4

9.5

9.6

9.7

The Allocation-Unit — BLISS-16/32Only. 9-1
9.1.1 Syntax. e e e e e e e e e e e e e e 9-2
9.1.2 Default. e e e e e e e e e e e 9-2
9.1.3 Restriction o e e e e e e e e e e e e 9-2
9.1.4 SemantiCs v v vt e e e e e e e e e e e e e e e e 9-2
The Extension-Attribute — BLISS-16/32Only 9-3
9.2.1 Syntax. e e e e e e e e e e e e 9-3
9.2.2 Restriction o e e e e e e e e e e e e 9-3
9.23 Default. e e e e e e e e e e e e e e e 9-3
924 SemantiCs« v v v v e e e e e e e e e e e e e e e e e e 9-3
The Structure-Attribute0 o e e 9-3
The Field-Attribute « « « « . o e e e e 9-4
941 Syntax. h i e e e e e e e e e e e e e e e 9-5
94.2 Default. e e e e e e e e e e e e e e e 9-5
9483 SemantiCs v v vt e e e e e e e e e e e e e e e e e 9-5
The Alignment-Attribute — BLISS-16/32Only 9-5
9.5.1 Syntax. o . e e e e e e e e e e 9-6
952 Restrictions e e e e e e e e e e 9-6
953 Default.o e e e e e e e e e e e e 9-6
9.5.4 Semantics v v v e e e e e e e e e e e e e e e e 9-6
955 Discussion i e e e e e e e e e e e e e 9-6
The Initial-Attribute. « . . o o e e e e e 9-7
9.6.1 Syntax. e e e e e e e e e e e e e e 9-8
9.6.2 Restriction e e e e e e e e e e e e e 9-8
96.3 Default. o e e e e e e e e e e e e 9-8
9.6.4 Semantics v v 4 e e e e e e e e e e e e e e e e 9-9
The Preset-Attribute. e e 9-9
0.7.1 Syntax. et e e e e e e e e e e e e e e e 9-10
9.7.2 Restriction « v« v v e e e e e e e e e e e e e e e 9-10
978 Default. v e e e e e e e e e e e e e e e e 9-10
9.7.4 Semantics v v i e e e e e e e e e e e e e e 9-10
975 Pragmatics.o oo e e 9-10.1

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

The Psect-Allocation Attribute 9-11

9.8.1 Syntax. 9-11
9.8.2 Restrictions 9-11
983 Defaults 9-12
9.84 Semantics 9-12
9.8.5 Pragmatics. 9-12
The Volatile-Attribute 9-12
9.9.1 Syntax. 9-13
9.9.2 Semantics L 9-13
The Novalue-Attribute. 9-13
9.10.1 Syntax., 9-14
9.10.2 Restrictions 9-14
9.10.3 Semantics 9-14
The Linkage-Attribute 9-14
9.11.1 Syntax. 9-15
9.11.2 Restrictions 9-15
9.11.3 Defaults 9-15
9.114 Semantics 9-15
The Range-Attribute. 9-15
9.12.1 Syntax. 9-16
9.12.2 Restriction 9-16
9.123 Default. 9-16
9.12.4 Semantics 9-17
The Addressing-Mode-Attribute — BLISS-16/32 Only 9-17
9.13.1 Syntax. 9-17
9.13.2 Default. 9-18
9.13.3 Semantics 9-18
The Weak-Attribute — BLISS-32 Only. 9-19
9.14.1 Syntax. 9-19
9.14.2 Semantics L L 9-20
A Summary of Attribute Usage. 9-20

April 1983

Chapter 9
Attributes

Many declarations are used to associate attributes with a declared name, as
well as declaring the name to be of a specific kind. Some attributes are
common to many forms of declarations, and some apply to only a few forms.
This chapter describes the attributes themselves.

The following syntax diagram lists the attributes:

(allocation-unit <= 16/32
~extension-attribute <= 16/32
structure-attribute
field-attribute
alignment-attribute <= 16/32
initial-attribute
attribute preset-attribute

< psect-allocation
volatile-attribute
novalue-attribute
linkage-attribute
range-attribute
address-mode-attribute <= 16/32 Only
weak-attribute <= 32 Only

Each attribute is described in a section of this chapter. A final section sum-
marizes the usage of attributes by showing which attribute can be used with
which kind of declaration.

9.1 The Allocation-Unit — BLISS-16/32 Only

An allocation-unit can be used in a data-declaration or a bind-data-declara-
tion. An allocation-unit can appear either as an independent attribute or as
an allocation-actual parameter within a structure-attribute (as described in
Chapter 11).

An allocation-unit is used wherever the “granularity” of storage allocation
must be specified.

April 1983 9-1

9-2

Examples of the use of allocation-units in the declaration of names are:

OWN A is a scalar data segment composed of one
A: WORD; word (16 bits).
GLOBAL B is a vector data segment composed of ten
B: VECTORC10,BY¥TEl; one-byte elements.
LocaAL C is a scalar data segment composed (by
Cs default) of one fullword.
9.1.1 Syntax

16/32 Only =>
allocation-unit WORD

LONG } <= 32 Only
{ BYTE

9.1.2 Default

The default allocation-unit is WORD for BLISS-16, and LONG for
BLISS-32.

9.1.3 Restriction

As shown in the syntax diagram, the allocation-unit LONG is valid for
BLISS-32 only.

An allocation-unit (used as an attribute) must not be used in the same decla-
ration as a structure-attribute.

If a declaration contains both an allocation-unit (used as an attribute) and an
initial-attribute, then the allocation-unit must precede the initial-attribute.

9.1.4 Semantics

An allocation-unit specifies a quantity of storage, as follows:

LONG 32 bits
WORD 16 bits
BYTE 8 bits

If the declaration of a name does not contain a structure-attribute (and is
therefore a scalar declaration), the allocation-unit determines the quantity of
storage allocated for the entire data segment. If the declaration has a struc-
ture-attribute, the attribute can include an allocation-unit as one of its alloca-
tion-actuals.

Attributes

9.2 The Extension-Attribute — BLISS-16/32 Only

Like an allocation-unit, an extension-unit can be used in a data-declaration or
a bind-data-declaration. An extension-attribute can appear either as an inde-
pendent attribute or as an allocation-actual within a structure-attribute (as
described in Chapter 11).

Examples of the use of an extension-attribute are:

»

OWN A is a scalar data segment composed
A: SIGNED WORDS of one signed word.

GLOBAL ‘ B is a vector data segment composed
B: VECTORC10,BYTE,SIGNEDI3 of 10 signed bytes.

LOCAL » C is a scalar segment composed of
C: UNSIGNED BYTES one unsigned byte.

9.2.1 Syntax

16/32 Only =>

extension-attribute { SIGNED }

UNSIGNED

9.2.2 Restriction

An extension-attribute (used as an attribute) must not appear in the same
declaration as a structure-attribute.

9.2.3 Default
The default extension-attribute is UNSIGNED.

9.2.4 Semantics

An extension-attribute specifies the value extension rule to use when fetching
the contents of a scalar field value. SIGNED specifies that the high order bit
of the fetched value (the sign bit) is to be used. UNSIGNED specifies that

zero bits are to be used.

The extension-attribute is normally specified in combination with the alloca-
tion-unit BYTE in BLISS-16, and with BYTE or WORD in BLISS-32.

9.3 The Structure-Attribute

A structure-attribute can be used in a data-declaration or a bind-data-decla-
ration. It associates the declared data-segment name to a separately declared

Attributes 9-3

structure-definition, causing the allocation of the data-segment to be con-
trolled by that structure-definition. Subsequent access to the data-segment is
also controlled by the associated structure-definition. (A structure-definition
is declared in a structure-declaration. BLISS provides several predeclared
structure-definitions, as described in Chapter 11.)

An example of the use of a structure-attribute is:

OWN
X: VECTORELBIS

The structure-attribute here is VECTORI8]. The attribute specifies that X is
a data-segment with a VECTOR structure. The predeclared structure-defini-
tion named VECTOR is described in Section 11.9. In accordance with that
definition plus the allocation-actual, 8, specified in the attribute, X is allo-
cated as a sequence of eight fullword elements that are designated X[0]
through X[7]. (In BLISS-16 or BLISS-32, an allocation-unit can be used as an
additional allocation-actual, e.g., VECTORI8,BYTE], to specify the size of
the elements allocated.)

A structure-attribute can name a user declared structure-definition as well as
one of the standard, predeclared structures described in Chapter 11. In any
case, the interpretation of the structure-attribute depends entirely on the
structure-declaration that governs the given structure-name.

As an example:

GLOBAL
Vi MATRIXL1OTS
The structure-attribute here is MATRIX[10]. The attribute specifies that Y is
a MATRIX structure. BLISS does not have a predeclaration for the name
MATRIX; therefore, this example must occur in the scope of an explicit
STRUCTURE declaration of MATRIX. The interpretation of the example
depends entirely on that STRUCTURE declaration.

The structure-attribute is fully described in Chapter 11, together with the
structure-declaration.

9.4 The Field-Attribute

9-4

A field-attribute can be used in data-declarations and bind-data-declarations.
It specifies one or more field-names that are to be associated with the declared
data-segment-name. This association allows the field-names to be used in
structure-references to the data segment, as described in Chapter 11. (The
field-attribute is meaningful only in declarations of structured data seg-
ments.)

The definition of a field-name, in terms of field-component values, is given in
a field-declaration that governs the use of that name. Field-declarations are
also described in Chapter 11.

As a “shorthand” notational convenience, a group of field-name definitions
can be identified (in the field-declaration) by a field-set-name and can then
be referred to in a field-attribute by that single name.

Attributes

9.4.1 Syntax

field-attribute FIELD ({ field-name })
field-set-name

field-name } name

field-set-name

9.4.2 Default

If a field-attribute is not specified for a data-segment-name, no field-names
may appear in an ordinary-structure-reference to the corresponding data seg-
ment.

9.4.3 Semantics

A field-attribute specifies the set of field-names that can validly appear in an
ordinary-structure-reference to a data segment declared with the given field-
attribute. A field-set-name in a field-attribute specifies a set of field-names
that can so appear. If no field-attribute is given, then no field-name is valid in
such a reference.

9.5 The Alignment-Attribute — BLISS-16/32 Only

An alignment-attribute can be used in an OWN, GLOBAL, LOCAL, or
STACKLOCAL data-declaration. In BLISS-32, an alignment-attribute can
also be used in a psect-declaration, as described in Section 18.1.1. This attrib-
ute indicates the address alignment required for a data segment relative to the
different levels of address boundaries (e.g., byte, word, longword, quadword).

The purpose of the alignment-attribute is to specify the ‘smallest’ boundary
at which the data segment may be allocated, generally a ‘larger’ boundary
than the default one. For example, an alignment-attribute might be used to
specify that a particular byte-scalar segment is to start at a word boundary
only, rather than at any byte boundary which is the default. Use of this
attribute can result in unused storage left between tHe previously allocated
data segment and the data segment to which the attribute applies.

The alignment-attribute indicates a particular address boundary by means of
a boundary value, n, which specifies that the binary address of the data
segment must end in at least n 0’s. For example:

OWN
A:BYTE ALIGN(1) 3

The alignment-attribute, ALIGN(1), specifies that data-segment A is to be.
allocated at an address that ends with at least one 0; which is to say that it is
to be aligned to a word boundary.

An example of BLISS-32 usage of the alignment-attribute is given in Section
9.5.5.

Attributes 9-5

9-6

9.5.1 Syntax

16/32 Only =>

alignment-attribute ALIGN (boundary)

boundary compile-time-constant-expression

9.5.2 Restrictions
The value of boundary must be a positive integer.
BLISS-16 ONLY

The value of boundary must be either 0 or 1, corresponding to byte- or
word-boundary alignment respectively.

The value of boundary must not exceed the value of the program-section
alignment boundary for the storage class being allocated.

The value of boundary in a LOCAL or STACKLOCAL declaration must not
exceed 2.

9.5.3 Default

The default alignment depends on the kind of data that is declared, as fol-
lows:

Kind of Data Default Alignment

BYTE scalar ALIGN(0)
WORD scalar ALIGN(1)
LONG scalar ALIGN(2) <= 32 Only
Any structure ALIGN(1) <= 16 Only
Any structure ALIGN(2) <= 32 Only

9.5.4 Semantics

Suppose the value of the boundary expression is n. The compiler allocates the
declared data segment in the unused portion of the appropriate program
section at the smallest possible address offset that ends with at least n zero
bits.

9.5.5 Discussion

The alignment-attribute is a nontransportable feature, is not required for
most purposes, and should only be used with a thorough knowledge of the
target system’s storage organization and accessing mechanisms.

A data segment declared as OWN or GLOBAL is allocated in the appropriate
OWN or GLOBAL program section. Its location is defined in terms of an
address offset, that is, an address relative to the beginning of the program
section. In BLISS-16 and BLISS-32, any address constitutes the boundary of

Attributes

one or more allocation units: Thus all addresses are byte boundaries, every
other address (relative to zero) is a word boundary as well, and in BLISS-32
every fourth address is also a longword boundary, and so on.

By default, a data segment is allocated at an address offset that is “natural”
for either its size or type, e.g., a word-size scalar is aligned to a word bound-
ary, and a structured segment is always fullword aligned, whatever its alloca-
tion unit.

In BLISS-16, where the value of boundary may be 0 or 1, the only meaningful
use of the alignment-attribute is to force byte-size scalar items to a word
boundary, presumably for reasons of execution efficiency in special situations.

In BLISS-32 the boundary value for OWN and GLOBAL data segments is
limited only by physical-storage considerations. Further, the alignment-
attribute can be used to specify a smaller as well as a larger boundary than
the default (except for byte items, obviously), essentially for purposes of stor-
age compaction versus execution efficiency.

A data segment declared in a LOCAL or STACKLOCAL declaration is allo-
cated in the current stackframe. The stack handling mechanism imposes
certain restrictions such that the alignment specified for a LOCAL or

STACKLOCAL data segment cannot exceed a longword boundary in
BLISS-32.

An example of the use of an alignment-attribute in BLISS-32 is:

OWN
¥: ALIGN(3) 3
In this example the alignment-attribute, ALIGN(3), directs the compiler to
allocate data-segment X in such a way that its binary address offset ends in at
least three 0’s. That is to say, it directs the compiler to align the segment to a
quadword boundary. Depending on where available storage begins, the com-
piler must leave from zero to seven bytes of unused storage in order to satisfy
this alignment attribute.

9.6 The Initial-Attribute

An initial-attribute can be used in an OWN, LOCAL, STACKLOCAL,
REGISTER, GLOBAL-REGISTER, EXTERNAL-REGISTER, or GLOBAL
data-declaration.

An initial-attribute supplies one or more initialization values, which are as-
signed to the data segment before program execution begins.

Examples of the use of initial-attributes are:

DWN ¥: INITIAL(Z2)S X is initialized to 2.
GLOBAL ¥: VECTORLG] Each element of Y is initialized
INITIAL(REP 8 OF (-1))3 to -1.
16/32 Only =>
GLOBAL Z: YECTORLZOBYTE] The first 4 bytes of Z are initial-
INITIAL(BYTE('STOP' ized to S, T, O, and P; the last
REP 16 OF (0)))3 16 bytes to 0.

Attributes 9-7

9.6.1 Syntax

initial-attribute INITIAL (initial-item ...)

initial-group
initial-item initial-expression

initial-string

initial-group REP replicator OF

{ allocation-unit } <= 16/32
REP replicator OF allocation-unit

<= 16/32

(initial-item ,...)

16/32 Only =>

LONG <= 32 Only
allocation-unit { WORD

BYTE
replicator compile-time-constant-expression
initial-expression expression*
initial-string string-literal

* The initial-item may be an executable expression; but it is restricted in use
to a link-time-constant-expression for OWN and GLOBAL declarations. For
LOCAL, STACKLOCAL, REGISTER, GLOBAL REGISTER, and
EXTERNAL REGISTER declarations, the initial-item may be an executable
expression.

9.6.2 Restriction

The initial-item value(s) must not occupy more storage than is allocated for
the data segment.

If a declaration contains both a structure-attribute and an initial-attribute,
then the structure-attribute must precede the initial-attribute.

If a declaration contains both an allocation-unit (used as an attribute) and an
initial-attribute, then the allocation-unit must precede the initial-attribute.
(BLISS-16/32 only.)

9.6.3 Default
BLISS-16/32 ONLY

If an initial-attribute appears in the declaration of a scalar name without a
structure-attribute being present, the default allocation-unit for the jnitial-

9-8 Attributes April 1983

items in the initial-attribute is the allocation-unit of the scalar name. Oth-
erwise (without a structure-attribute), the default allocation-unit is WORD
for BLISS-16 and LONG for BLISS-32.

9.6.4 Semantics

With the exception of the case where a LOCAL declaration is handling a non-
plit item, the list of initial-items is evaluated as it would be in a plit. The
resulting value(s) is placed in the data segment at the time it is allocated. If
the initial-item(s) occupies less storage than the data segment, the trailing
bits of the data segment are initialized to zeros.

9.6.5 Pragmatics

The use of the INITIAL attribute is the preferred method for initializing
scalar data segments, while the use of the PRESET attribute (as described in
Section 9.7) is the best method for initializing structured storage.

9.7 The Preset-Attribute

A preset-attribute can be used in an OWN, LOCAL, STACKLOCAL, REGIS-
TER, GLOBAL-REGISTER, EXTERNAL-REGISTER, or GLOBAL data-
declaration that declares a structured data-segment. It allows static initializa-
tion of individual fields of a structured data-segment.

A preset-attribute supplies an initialization value for one or more fields of a
data structure, one value per specified field. These values are assigned to the
data segment before program execution begins. Unspecified portions of the
data segment are set to zero.

An example of the use of PRESET is given in the following program fragment,
involving a block structure defined with field-names:

FIELD LINK_LIST_ITEMS =

SET

LL_VALUE = [0,0,%4BPVAL/Z2,01.
LL_.TYPE = [OZBRVAL/ZABPUAL/Z2.01 .
LL_LAST = [14+0+%4BPUAL 0T,

LL_NEXT = [2+0,:%4BRPVAL,0Q]

TESS

GLOBAL LLIST_HEAD : BLOCKI31 FIELD(LINK_LIST_ITEMS)
PRESET(L[LL_NEXT] LLIST_.HEAD
[LL-LABTI LLIST_HEAD »
[LL_VALUE] -1) i

wonon

In this example the origin block of a linked list is initialized with suitable
values; note that the list of preset values is order independent. The LL__
TYPE field is set to zero by default. (The predeclared literal 5cBPVAL used in
the example is defined in Section 14.1.5.)

April 1983 Attributes 9-9

9.7.1 Syntax

preset-attribute PRESET (preset-item ,...)

preset-item [ctce-access-actual ,... | = preset-value

ile-time- nt-expression
ctee-access-actual { compile-time-consta p }

field-name

preset-value expression™*

* For OWN and GLOBAL declarations the preset-value must be a link-time-
constant-expression. For LOCAL, STACKLOCAL, REGISTER, GLOBAL
REGISTER, and EXTERNAL REGISTER declarations the preset-value may
be an executable expression.

The field-name is defined in Chapter 11.

9.7.2 Restriction

Within the declaration (OWN, LOCAL, etc.), the preset-attribute must be
preceded by a structure-attribute.

If any preset-item contains a field-name, the preset-attribute must be pre-
ceded by a field-attribute designating that field-name.

The preset-attribute and initial-attribute may not be used in the same decla-
ration.

A declaration may not contain mdre than one preset-attribute.

The preset value(s) must not occupy more storage than is allocated for the
data segment, and the fields described by the preset-items may not overlap.

When expanded, the structure-reference formed by concatenating the declara-
tion name with the bracketed access-actual list of a preset-item must only
yield a link-time-constant-expression for an OWN or GLOBAL declaration.
The value of that expression must be within the range of addresses allocated
to the data-segment. Also, if that expression is a field-reference, it must
conform to the dialect-specific restrictions on field-references used in an as-
signment context, as specified in Section 11.2. (See the Pragmatics subsection
below.)

9.7.3 Default

When a preset-attribute appears in one of the declarations, any portion of the
segment not described by a preset-item is set to zeros upon allocation.
9.7.4 Semantics

The declaration name (OWN, LOCAL, etc.) is concatenated with each preset-
item, in turn, and the expression(s) so formed are evaluated as if they were
assignment expressions. The resulting value(s) are placed in the data segment

9-10 Attributes April 1983

April 1983

at the time it is allocated. Any portions of the data-segment not explicitly
initialized by preset-items are set to zeros.

9.7.5 Pragmatics

The use of the PRESET attribute is the preferred method for initializing
nonscalar data-segments, although some simple VECTOR-type structures
can be initialized conveniently with the INITIAL attribute. Initialization of
most heterogenous structures with the INITIAL attribute is, however, imprac-
tical or at least an error-prone practice.

Note that a psect-allocation attribute can be used to conveniently assign an
initialized data-segment to write-protected storage; see Section 9.8.

The restrictions placed on the access-actual list of the preset-item (Section
9.7.2) seem complicated, but they simply reflect the fact that assignment-
expressions involving a structure-reference as their left operand are, in effect,
evaluated during the initialization process and must meet the following condi-
tions:

1. Must be resolvable at link time for an OWN or GLOBAL declaration.

2. Must result only in stores to locations allocated to the named data-
segment (with no spillover), and

3. Must result in assignments that are valid for the intended target sys-
tem(s), in terms of field size and word-boundary constraints (if any).
For example, in all dialects a field to be stored into (or fetched from)
may not be longer than a fullword.

The specific restrictions on field-references (the typical result of structure-
reference expansions) are fully described in Chapter 11.

These restriction come into play only in the case of a relatively complicated or
‘tricky’ structure, such as one whose definition contains a routine call or
performs bounds checking, for example. They pose no problem for the initiali-
zation of predeclared structures and other comparably straightforward user-
declared structures.

Attributes 9-10.1

9.8 The Psect-Allocation Attribute

The psect-allocation attribute can be used in declarations of permanent data-
segments and in declarations of routines. It specifies the name of the program
section in which the declared data-segment or routine (code segment) is to be
allocated. Program sections and the psect-declaration are described in Chap-
ter 18.

The psect-allocation attribute provides a more convenient means of making
program-section assignments for OWN, GLOBAL, and code segments than is
possible using the psect-declaration alone. A major use of the psect-allocation
attribute is for assigning an OWN or GLOBAL data-segment to write-pro-
tected storage. For example:

GLOBAL LITERAL

MAIN_POWER = 0O, AUX.POWER = 1, PRIMARY.BYPASS = 2.
VALVE_1 = 3, VALVE.Z = 4, SECOND-BYPASS = 5, DUMPER = 6.
OFF = 0y ON = 1 3

GLOBAL STARTUP.STATE : BITVECTORL7I PSECT($PLITS)

]
PRESET(IMAIN.POWER] = [ON
[LAUX . POWER] = OFF
[VALVE. 11 = (ON
[VvAaLVE.Z2] = OFF
[PRIMARY.BYPASE]T = OFF
[SECOND.BYPASSE1 = ON .
LDUMPER] = QFF) 3

This fragment of a supposed process-control program establishes a control
table of symbolically-named binary values for use by several modules and,
since its content should never be modified, it is allocated in the $PLIT$
program-section, by means of the PSECT attribute. “$PLIT$” names the
default program section for plit storage, which is given read-only access pro-
tection (if available on a given target system).

9.8.1 Syntax

psect-allocation PSECT (psect-name)

psect-name name

9.8.2 Restrictions

The psect-allocation attribute may appear in the following data- and routine-
declarations only:

FORWARD, OWN, GLOBAL, EXTERNAL,
FORWARD ROUTINE, ROUTINE, GLOBAL ROUTINE, EXTERNAL
ROUTINE

The psect-name specified in the attribute must either be a predeclared, de-
fault program-section name or be explicitly declared in a psect-declaration
prior to its use. See Section 18.1.

Attributes 9-11

If specified in a FORWARD or FORWARD ROUTINE declaration, the psect-
name must match the psect-name explicitly or implicitly associated with the
controlling declaration of the data-segment or routine.

9.8.3 Defaults

If no psect-allocation attribute is specified, then the declared data-or code-
segment is allocated in the program section established by the most recent
psect-declaration for the segment’s storage class (OWN, GLOBAL, or
CODE), or in the appropriate default program section.

9.8.4 Semantics

In declarations other than EXTERNAL or EXTERNAL ROUTINE, the
psect-allocation attribute causes the declared data-segment or code-segment
to be allocated in the named program section.

In EXTERNAL and EXTERNAL ROUTINE declarations, the psect-alloca-
tion attribute informs the compiler that the declared segment is allocated in
the named program section of another module (presumably), and any attrib-
utes defined for that program section in the current module are to apply.

9.8.5 Pragmatics

While the psect-allocation attribute need not appear in a FORWARD or
FORWARD ROUTINE declaration, its specification in those declarations
can favorably affect the quality of code generated for the segment in
question, particularly in the case of FORWARD ROUTINE. (Note that
there is no default program-section name associated with a FORWARD or
FORWARD ROUTINE declaration.)

The psect-allocation attribute is essentially a convenience, allowing the pro-
grammer to more easily achieve what would otherwise require repeated uses of
the PSECT declaration.

9.9 The Volatile-Attribute

9-12

A volatile-attribute can be used in any data-declaration other than a REGIS-
TER declaration. It can also be used in a bind-data-declaration.

For purposes of optimization, the compiler assumes that the contents of a
data segment will be changed during execution in either of two ways: by an
assignment or by a routine-call. The volatile-attribute specifies that the con-
tents of the declared data segment can change in a third way: by an action
that is not directly specified in the module being compiled. This attribute
causes the compiler to assume that the value in the declared data segment

Attributes

can change at any time. Consequently the compiled code must fetch the
contents of that data segment anew for each fetch in the BLISS program and
must store a value for each assignment.

An example of the use of a volatile-attribute is:
GLOBAL INPUT__PORT: VOLATILE;

In this example, it is assumed that INPUT_PORT designates a data segment
that is set, through an interrupt routine, whenever a fullword of input arrives.

9.9.1 Syntax

volatile-attribute VOLATILE

9.9.2 Semantics

A volatile attribute is a warning to the compiler that the contents of a data
segment can change at any time. A module that does not declare each such
data segment as VOLATILE is invalid.

If the volatile-attribute appears in the declaration of the name of a REF
structure (as described in Sections 11.1.3.5 and 11.4), then the volatile attrib-
ute applies both to the storage for the address of the structure and to the
storage for the structure itself.

9.10 The Novalue-Attribute

The novalue-attribute can be used in a routine-declaration or a bind-routine-
declaration. It specifies that the declared routine does not return a value.

It is usually possible to determine by inspection whether or not a routine
returns a value. However, in order to facilitate optimization and to provide
clear documentation, this information must be given as part of the declaration
of the routine-name. Specifically, the novalue-attribute must or must not be
used depending on whether the routine does not or does return a value.

An example of a routine that does not return a value is:

ROUTINE EXCH(X %) s NovaLUE = There is a NOVALUE attribute, so the
BEGIN routine does not return a value; in-
LOCAL TEMP; stead, its effect is to exchange the val-
TEMP = oo ¥; ues of X and Y.
oK=L Y
WY = JTEMP3
END 3

Attributes 9-13

This routine, having no RETURN expression, returns control after complete
evaluation of the routine-body. Since the routine-body is a block that consists
solely of block-actions (expressions terminated by a semicolon) and has no
block-value, no value is returned. The NOVALUE attribute affirms this pro-
cedure-like characteristic. See Section 8.1 for a discussion of block-actions
and block-values.

Note carefully that if routine EXCH did not contain the NOVALUE attrib-
ute, the compiler would assume that a null expression (namely the block-
value expression) exists between the last expression shown and the block
terminator. This in turn would cause the compilation diagnostic “Null expres-
sion appears in value-required context”’. When such a routine is called, it may
appear to return a value, but that value is unpredictable.

Alternatively, if the last assignment expression were not terminated by a
semicolon (and NOVALUE was specified), the routine would indeed have a
block-value — the value of that assignment expression. However, that value
would be discarded prior to return of control because of the NOVALUE attrib-
ute. Thus a routine with the NOVALUE attribute never has a return value, no
matter what value-implying expressions appear in its body.

9.10.1 Syntax

novalue-attribute NOVALUE

9.10.2 Restrictions

A routine that is declared with a novalue-attribute must not be called in a
context that requires a value.

9.10.3 Semantics

The value of a routine that is declared with the novalue-attribute is unde-
fined.

9.11 The Linkage-Attribute

9-14

The linkage-attribute can be used in a routine-declaration or a bind-routine-
declaration. It specifies a linkage-name that is associated with the declared
routine-name. This, in turn, causes the routine-name to be associated with
the linkage-declaration that governs that linkage-name. The linkage-defini-
tion identified by the linkage-name controls both the code generated for the
given routine and the code generated for any call to that routine.

Attributes

A linkage is the machanism used to call a routine; it saves registers, passes
parameters, and controls other aspects of communication between a routine-
call and the called routine. The default linkage-name BLISS in BLISS-16/32,
or BLISS36C in BLISS-36, identifies the standard linkage convention for
BLISS-compiled routines.

The linkage-attribute is simply a name; it is the declaration of that name that
specifies the linkage to be used. BLISS includes several predeclared linkage-
names. Linkage-declarations and predeclared linkage-names are described in
Chapter 13.

9.11.1 Syntax

linkage-attribute linkage-name

linkage-name name

9.11.2 Restrictions

A linkage-name must be one of the predeclared linkage-names or must be
governed by a linkage-declaration.

A linkage-attribute given for a routine-name in an EXTERNAL ROUTINE,
FORWARD ROUTINE, BIND ROUTINE, or GLOBAL BIND ROUTINE
declaration must be the same as the linkage-attribute given in the correspond-

ing ROUTINE or GLOBAL ROUTINE declaration.

9.11.3 Defaults

The default linkage-attribute is the predeclared linkage-name BLISS for
BLISS-16 or BLISS-32, and the linkage-name BLISS36C for BLISS-36.

9.11.4 Semantics

A linkage-attribute associates a linkage-name with a routine-name. Thus, the
linkage-attribute indirectly controls the linkage-related code generated for a
ROUTINE or GLOBAL ROUTINE DECLARATION, and the code generated
for all calls to the routine, according to the definition of the specified linkage-
name.

9.12 The Range-Attribute

The range-attribute can be used in a literal-declaration or external-literal-
declaration. These declarations are described in Chapter 14.

Attributes 9-15

9-16

A literal-name designates a constant value that is used as data but is stored in
the object code rather than in a data segment. When the compiler is provided
with sufficient information and the literal value is small enough, a short field
can be generated for the value rather than a fullword.

The range-attribute specifies the quantity of storage required for a literal and
indicates whether the field is to be interpreted as a signed or unsigned repre-
sentation.

An example of the use of the range-attribute is:
EXTERNAL LITERAL X: UNSIGNED(4)3

The effect of this attribute in a BLISS-32/VAX-11 context is as follows.
(Analogous effects would be obtained on other target systems.) At the time
the module containing this declaration is compiled, it is assumed that the
value of X can be accomodated in a VAX-11 literal-operand specifier, and
code is generated on that assumption. Then, when the modules are linked, a
check is made for agreement of the range-attribute with the external value
and the value of X is then placed in the empty fields provided for it.

Suppose the following declaration appears in another module of the same
program:

GLOBAL LITERAL X = 12: UNSIGNED(4);
This declaration not only specifies that X designates the value 12, but also
that it can be stored as an unsigned integer in four bits. This attribute both

documents that a range-attribute assumption exists in another module of the
program and allows the compiler to verify that the assumption is satisfied.

9.12.1 Syntax

e SIGNED o
range-attribute { UNSIGNED } (bit-count)
bit-count compile-time-constant-expression

9.12.2 Restriction

The value, n, of bit-count must be in the range 1 < n < %BPVAL. That is, the
field specified may not be longer than a fullword.

9.12.3 Default
The default range-attribute is SIGNED(%BPVAL).

Attributes

9.12.4 Semantics

The range-attribute specifies the maximum number of bits required for a
given literal value, and indicates whether the value is to be interpreted as a
signed or unsigned integer.

9.13 The Addressing-Mode-Attribute — BLISS-16/32 Only

April 1983

Each data or routine name has, as its value, an address. As the compiler
translates a BLISS module into an object module, it replaces each use of a
data or routine name with an offset address value. The final address value is
supplied later by the linker and the operating system. But the compiler does
provide a sequence of bytes in the object code to accommodate the final
address value.

A VAX-11 address can be encoded as either absolute or relative, and in either
a short or long form, and a PDP-11 address can be encoded as either absolute
or relative. The addressing-mode-attribute determines the way in which the
address is encoded. For every use of a data or routine name, the default rules
specify an addressing-mode-attribute (if one is not given explicitly).

An addressing-mode-attribute can be given in an OWN, GLOBAL,
FORWARD or EXTERNAL declaration, described in Chapter 10, or in
a ROUTINE, GLOBAL ROUTINE, FORWARD ROUTINE or
EXTERNAL ROUTINE declaration, described in Chapter 12. This attribute
can also be used in a PSECT declaration (Section 18.1), and in a SWITCHES
declaration or a module-head switch (Sections 18.2 and 19.2 respectively).
The latter two uses indirectly control a number of individual data- and/or
routine-declarations.

9.13.1 Syntax

16/32 Only =>

addressing-mode-

attribute ADDRESSING__MODE { mode-16 }
mode-32

mode-16 { ABSOLUTE }

RELATIVE

GENERAL

. ABSOLUTE
mode-32 LONG__RELATIVE
WORD__RELATIVE

Attributes 9-17

9.13.2 Default
Consider a name that is declared by one of the following declarations:

own-declaration
global-declaration
forward-declaration
external-declaration
routine-declaration
global-routine-declaration
forward-routine-declaration
external-routine-declaration
psect-declaration

For a name so declared, the addressing-mode-attribute is obtained by the
following rules (in the order of their application):

1. If a default PSECT is associated with one of these declarations, the mode
declared in the psect is used. Thus OWN, GLOBAL, and ROUTINE
declarations would use psect addressing modes of OWN, GLOBAL, and
CODE, respectively (as described in Section 18.1).

2. If the declaration type is FORWARD or FORWARD ROUTINE, the mode
established by the ADDRESSING_MODE (NONEXTERNAL-=...) mod-
ule-head switch or the switches declaration is used (as described in Sec-
tions 18.2 and 19.2).

3. If the declaration type is EXTERNAL or EXTERNAL ROUTINE, the
mode established by the ADDRESSING_MODE (EXTERNAL-...)
module-head switch or the switches declaration is used (as described in
Sections 18.2 and 19.2).

If a PSECT attribute is given, the addressing mode specified in the psect is
used (as shown in the following example):

OWN
X: PSECT(GEN)
ADDRESSING_MODE(WORD RELATIVE);

If an ADDRESSING_MODE attribute is given, the addressing mode speci-
fied by the switch is used. If both PSECT and ADDRESSING__MODE are
used, then the last attribute encountered determines the addressing mode.

9.13.3 Semantics

The compiler translates each use of a data or routine name into an encoded
address. An encoded address consists of an encoding-type followed by a dis-
placement. The encoding-type specifies the addressing-mode-attribute and
other information, while the displacement is an address specification. The
encoding-type always occupies one byte, while the displacement occupies a
number of bytes that is determined by the addressing-mode-attribute.

9-18 Attributes April 1983

The addressing-mode-attribute instructs the compiler in the preparation of an
encoded address, as follows: '

Attribute Instruction to Compiler

GENERAL Let the linker make the choice between using a
relative displacement or an absolute value. Provide
four bytes for the displacement, or value, and one
byte for the addressing mode descriptor.

ABSOLUTE Use an absolute value. If BLISS-32 put in four
bytes. If BLISS-16 put in two bytes.

LONG_RELATIVE Use a.relative displacement, and put it in four

bytes.

WORD_RELATIVE Use a relative displacement, and put it in two
bytes.

RELATIVE Use a relative displacement, and put in two bytes.

The RELATIVE and WORD_RELATIVE attributes apply to most names
(each is the ultimate default for its mode), and are appropriate for references
within executable images that are not unusually large. The LONG_RELA-
TIVE attribute is used in the infrequent situation where 16 bits is not suffi-
cient to represent a relative address. The ABSOLUTE attribute is used for
names that designate addresses that are fixed in the address space, such as
system service routines, device register addresses, and data. The GENERAL
attribute is used when the choice between an absolute or relative address
cannot be made at compile time.

9.14 The Weak-Attribute — BLISS-32 Only

April 1983

The weak-attribute can be used in a declaration that has either GLOBAL or
EXTERNAL in its keyword phrase. Such declarations are described in many
places in the following chapters.

The weak-attribute affects the way in which the VAX-11 linker and librarian
programs handle global names. (This is discussed further under EXTERNAL
declarations, in Section 10.4.3.)

9.14.1 Syntax

32 Only =>

weak-attribute WEAK

Attributes 9-19

9.14.2 Semantics

The weak-attribute specifies a property of a name for use by the linker and
librarian programs, as described in the manuals for those programs.

9.15 A Summary of Attribute Usage

Each attribute description in this chapter includes a list of the declarations in
which the attribute can be used. That information is gathered together in the
following table, where an “x’* marks each attribute that can be used in each
kind of declaration.

Allocation-Unit

Extension
Structure
Field
Alignment
Initial
Preset
Psect-Allocation
Volatile
Novalue .
Linkage
Range
Addressing-Mode
¢ Weak
Y Y Y Y Y Y VYY
OWN X X X X X X X X X X
GLOBAL X X X X X X X X X X X
FORWARD X X X X X X X .
EXTERNAL X X X X X X X X
LOCAL X X X X X X X X
STACKLOCAL X X X X X X X X
REGISTER X X X X X X
GLOBAL REG. X X X X X X
EXTERNAL REG. X X X X X X
MAP X X X X X
BIND X X X X X .
GLOBAL BIND X X X X X X
ROUTINE X X X X
GLOBAL RTN. X X X X X
FORWARD RTN. X X X) S
EXTERNAL RTN. X X X X X
BIND ROUTINE . X X
GLOBAL BIND RTN. . X X X
LITERAL X . .
GLOBAL LIT. X . X
EXTERNAL LIT. X X

9-20 Attributes April 1983

Chapter 10 Data Declarations

10.1 Own-Declarations o o .o e e e 10-2
10.1.1 Syntax. . . .« v v o e e e e e e e e e e e e 10-2
10.1.2 Restrictions« v v i v e e e e e e e e e e e 10-3
10.1.3 Semantics o e e e e e e e e e e e e 10-3

10.2 Global-Declarations « . . v v e 0 e e e e 10-4
10.2.1 Syntax. o oo e e e e e e e e e e e 10-4
10.2.2 Restrictionso e e e e e 10-4
10.2.3 Semantics e e e e e e e e e e e e e 10-4

10.3 Forward-Declarations o« v o e 10-5
10.3.1 Syntax. oL e e e e e e e 10-5
10.3.2 Restrictions 0 e e e e e e e e e e 10-6
10.3.3 Semantics i v e e e e e e e e e e e e e e 10-6

10.4 External-Declarations « . . < . v 10-6
10.4.1 Syntax. o o e e e e e e e e 10-6
10.4.2 Restrictions« v v v e e e e e e e e e e e 10-7
10.4.3 Semantics v . v v e e e e e e e e e e e e e 10-7

10.5 Local-Declarations. « . « « v« v v e e e e 10-7
10.5.1 Syntax. v . e e e e e e e e e e e e e 10-8
10.5.2 Restrictions e e e e e e e e e e 10-8
10.5.3 Semantics v e e e e e e e e e e e e 10-8
10.5.4 Pragmatics.« o o0 e e e 10-9

10.6 Stacklocal-Declarationso 0o 0 . 10-9
10.6.1 Syntax. o o e e e e e e e e 10-9
10.6.2 Restrictions o . oo e e e e e e 10-9
10.6.3 Semantics v e e e e e e e e e e e e 10-9

10.7 Register-Declarations.o oo 10-9
10.7.1 Syntax. . . . v v v e e e e e e e e e e e e e e e 10-10
10.7.2 Restrictions0 oo e e e e 10-10
10.7.3 Semantics e e e e e e e e e e e e e 10-11
10.7.4 Pragmatics. o0 e e 10-11

10.8 Global-Register-Declarations 10-12
10.8.1 SYNtAX. « « v v o e e 10-12
10.8.2 Restrictions« © 0 i e e e e e e e e e e e e 10-13
10.8.3 Semantics v i e e e e e e e e e e e e e e e e 10-13

10.9 External-Register-Declarations 10-14
10.9.1 Syntax. 00 e e e e e e e 10-14
10.9.2 Restrictions « . v v ot e e e e e e e e e e e e 10-14
10.9.3 Defaults i e e e e e e e e e e e e e 10-15
10.9.4 Semantics e e e e e e e e e e 10-15

10.10 Map-Declarations00 e e 10-15
10.10.1 Syntax. v . v e e e e e e e e e e e e e e e 10-16
10.10.2 Restrictionso oo 10-16

10.10.3 Semantics v e e e e e e e e e e e e 10-16

Chapter 10
Data Declarations

A data-declaration describes one or more data segments. Taken together, the
data declarations of a program specify the storage required for the data on
which that program operates.

The data-declarations can be divided into three categories, as follows:

¢ A permanent declaration begins with OWN, GLOBAL, or EXTERNAL.
It describes a data segment that remains allocated throughout the execu-
tion of the program.

e A temporary declaration begins with LOCAL, STACKLOCAL, REGIS-
TER, GLOBAL REGISTER, or EXTERNAL REGISTER. It describes a
data segment that exists only during each execution of a given block.

e An overlay declaration begins with MAP. It describes a data segment
that has been declared elsewhere, but that is given new attributes by this
declaration.

A data-declaration provides some or all of the following information about
each data segment it declares:

e The name of the data segment.

¢ The address of the data segment, which is determined by the kind of
declaration and by some of the attributes. The address of the data seg-
ment becomes the value of the declared name.

e The scope of the name of the data segment, which depends on the posi-
tion of the declaration within the program and on the kind of declaration.

e The longevity of the data segment, which is determined by the kind of
declaration (permanent or temporary).

e The attributes of the data segment, which are given as part of the decla-
ration and by the default rules for attributes.

The attributes applicable to data-declarations are described in Chapter 9
except for the structure-attribute which is described in Chapter 11 along with
other aspects of data structures.

10-1

The syntax diagram for data-declarations is:

(own-declaration
global-declaration
forward-declaration
external-declaration >
local-declaration
stacklocal-declaration
register-declaration
map-declaration)

data-declaration

10.1 Own-Declarations

The storage for an OWN data segment is permanent; that is, it is created
before program execution begins and exists throughout program execution.
The scope of an own-declaration is its immediately containing block (includ-
ing any lower-level blocks contained therein). That is to say, the name of an
OWN data segment can be used only within the block in which it is declared.

An example of an own-declaration in a routine-declaration context is:

ROUTINE KILO =
BEGIN
OWN
K INITIALC(G) S
K= o H+13
IF ¥ LEQ 1000 THEN 1 ELSE 0O
END 3

The data segment named X is allocated and initialized only once, before
program execution begins. It can be referred to by the name X only within the
routine KILO.

10.1.1 Syntax

own-declaration OWN own-item ,... ;
own-item own-name { : owp-attribute }
nothing
own-name name
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only

structure-attribute
field-attribute
own-attribute < alignment-attribute > <= 16/32 Only
initial-attribute
preset-attribute
psect-allocation
volatile-attribute

10-2 Data Declarations

10.1.2 Restrictions

BLISS-16/32 only: A structure-attribute must not appear in the same decla-
ration as an allocation-unit or an extension-attribute. If the declaration con-
tains both an allocation-unit attribute and an initial attribute, the allocation-
unit must precede the initial-attribute.

A field-attribute can appear only in a declaration that has a structure-
attribute.

If the declaration contains both a structure-attribute and an initial-attribute,
the structure-attribute must precede the initial-attribute.

If the declaration contains both a structure-attribute and a preset-attribute,
the structure-attribute must precede the preset-attribute.

An initial- and a preset-attribute must not appear together in the declaration.
The declaration must not contain more than one initial- or preset-attribute.

If the preset-attribute contains a field-name, the preset-attribute must be
preceded by a field-attribute that designates the field-name.

10.1.3 Semantics

The data segment designated by a name that is declared OWN is allocated in
the current program section for the storage class OWN, as described in Sec-
tion 18.1. Program sections for the storage class OWN are created before
program execution begins and are not discarded until after program execution
is complete.

The data segment for an OWN name is always allocated at the lowest possible
address within the unused portion of the current OWN program section, after
allowing for address-alignment requirements (if any).

In BLISS-16, data segments larger than one byte are allocated at even ad-
dresses, which may leave an unused byte preceeding the data segment. One-
byte data segments are allocated at the next available byte.

In BLISS-32 the address must be consistent with the alignment-attribute,
which is either given explicitly or determined by default. The alignment-
attribute may dictate some unused bytes, as described in Section 9.5.

In BLISS-36 there are no special alignment rules; each data segment is allo-
cated at the next available word.

Because OWN data segments are allocated in this way, the address of one
OWN data segment can be calculated relative to that of another, provided
that both segments are declared in the same module and allocated in the
same program section.

When the storage for an OWN data segment is created by the linker, it is set
to 0’s. If the data segment is given an initial value in the declaration, it is
initialized by the linker.

Data Declarations 10-3

10.2 Global-Declarations

10-4

Like an OWN data segment, the storage for a GLOBAL data segment is
permanent; that is, it exists throughout program execution. In contrast to an
OWN data segment, the name of a GLOBAL data segment can be used in
several separate blocks; that is, in the block in which it is declared GLOBAL
and in each block in which it is declared EXTERNAL.

Usually the block in which a name is declared GLOBAL is in one module and
the blocks in which it is declared EXTERNAL are in other modules. In this
way, a data segment can be shared among several modules.

Aside from the initial keyword, the syntax of the own-declaration and global-
declaration is identical, except that in BLISS-32 the weak-attribute is per-
mitted in a global-declaration.

10.2.1 Syntax

global-declaration | GLOBAL global-item ,... ;

global-item global-name { : global-attribute }
nothing
global-name name
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only

structure-attribute

field-attribute

global-attribute alignment-attribute <= 16/32 Only
initial-attribute

preset-attribute

psect-allocation

volatile-attribute

weak-attribute <= 32 Only

10.2.2 Restrictions

A name is declared as global when the declaration begins with the keyword
GLOBAL (except for GLOBAL REGISTER, Section 10.8). A name must not
be declared as global more than once in a program.

All the attribute restrictions given in Section 10.1.2 also apply to GLOBAL
declarations.

10.2.3 Semantics

The data segment designated by a name that is declared GLOBAL is allo-
cated in the current program section for the storage class GLOBAL, as de-
scribed in Section 18.1. Program sections for the storage class GLOBAL are

Data Declarations

created before program execution begins and are not discarded until after
program execution is complete.

The data segment for a GLOBAL name is allocated in the same predictable
way as the data segment for an OWN name. Therefore, a programmer can
determine the relative addresses of any two GLOBAL data segments that are
declared in the same module and are allocated in the same program section.

A GLOBAL data segment can be accessed by name within the scope of the
declaration of its name. In addition, it can be accessed within the scope of any
external-declaration of its name.

10.3 Forward-Declarations

A forward-declaration is used to give the attributes of a name before storage is
allocated for the name. A forward-declaration is always used in conjunction
with an own-declaration or a global-declaration; it is used to avoid what
would otherwise be a vicious circle of definitions. Such situations are unusual,
but they do arise.

As an example, suppose that X and Y are pointers; that is, X and Y are each
the name of a data segment that contains the address of another data seg-
ment. Suppose, also, that X and Y must be initialized to point to each other.
The required declarations are:

FORWARD

Yy
OWN
e INITIALCY) s
¥: INITIAL(X)
The forward-declaration declares Y so that it can be used to initialize X
which, in turn, is used to initialize Y.

10.3.1 Syntax

forward-declaration | FORWARD forward-item ,... ;

forward-item forward-name { : for\fvard-attribute }
nothing
forward-name name
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only
structure-attribute
forward-attribute field-attribute

psect-allocation
volatile-attribute
addressing-mode-attribute <= 32 Only

Data Declarations 10-5

10.3.2 Restrictions

Each name that is declared by a forward-declaration must also be declared, a
second time, by an own-declaration or a global-declaration that is in the same
block.

After the default attributes have been filled in, a forward-declaration of a
name and the associated own-declaration or global-declaration of the same
name must be identical with respect to all of the attributes allowed in the
forward-declaration.

All of the attribute restrictions given in Section 10.1.2 also apply to FOR-
WARD declarations.

10.3.3 Semantics

The forward-declaration associates attributes with a name without allocatmg
the storage for that name.

10.4 External-Declarations

10-6

A name that is declared EXTERNAL is assumed to be declared GLOBAL
somewhere else in the same program. The linker treats each occurrence of the
name governed by an external-declaration as if it were governed by the global-
declaration of the same name. Thus the external declaration does not cause
the allocation of a data segment but rather extends the accessibility of a data
segment that is allocated elsewhere.

10.4.1 Syntax

external-declaration | EXTERNAL external-item ,... ;

external-item external-name { : extgrnal-at‘cribute }
nothing
external-name name
(allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only
structure-attribute
) field-attribute
external-attribute < >

psect-allocation

volatile-attribute
addressing-mode-attribute <= 32 Only
weak-attribute <= 32 Only

Data Declarations

10.4.2 Restrictions

A name that is declared EXTERNAL must also be declared GLOBAL some-
where else in the same program. In BLISS-32, this restriction does not apply
if the EXTERNAL name has the weak-attribute.

All of the attribute restrictions given in Section 10.1.2 also apply to EXTER-
NAL declarations.

After default attributes have been filled in, the following attributes of the
EXTERNAL and GLOBAL declarations of a given name must be identical:

allocation-unit
extension-attribute
structure-attribute
field-attribute
volatile-attribute

10.4.3 Semantics

The linker generates and uses a list of all names that are declared GLOBAL in
the entire program. For each such name, the list shows the value of the name
and some of the attributes of the name. This list is used in determining the
value of a given EXTERNAL name as follows:

e The list is searched for an entry for the given name. If such an entry is
found, then it supplies the value of the given EXTERNAL name.

e In BLISS-32 only, if no entry for the given name is found and the given
name has the weak-attribute, then 0 is used as the value of the given
name.

e If no entry for the given-name is found and the given name does not have
the weak-attribute, then the program is not valid.

In BLISS-32 only, when an EXTERNAL name has the value 0 (determined
because no entry was found and the weak-attribute was present), the program
can be executed provided an attempt is not made to use the given name as an
address.

An EXTERNAL name already declared can be encountered in a GLOBAL or
FORWARD declaration. If such a case arises, the following is done: First,
parse the declaration. Then compare the attributes of the EXTERNAL decla-
ration with those of the GLOBAL or FORWARD declaration; if there is a
mismatch, generate a warning message.

10.5 Local-Declarations

The storage for a LOCAL data segment is temporary; that is, it exists only
during the execution of the block in which it is declared. The data segment is

Data Declarations 10-7

10-8

allocated either in the stackframe for the block in which it is declared, or in a
general register that is free.

The scope of a LOCAL data-declaration is its immediately containing block
excluding any lower-level contained routines. That is, unlike OWN data seg-
ments, “up-level” references to a LOCAL data segment from a lower-level
routine are not permitted.

10.5.1 Syntax

local-declaration LOCAL local-item ,... ;

local-item local-name { : locgl-attribute }
nothing
local-name name
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only

structure-attribute

field-attribute

alignment-attribute <= 16/32 Only
initial-attribute

preset-attribute

volatile-attribute

local-attribute

10.5.2 Restrictions
A local-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the declara-
tion of another routine, routine B. If a name is declared LOCAL in routine A
and is not declared in routine B, then the name cannot be used in routine B.
(Such usage would be an “up-level” reference, which is prohibited for local-
names.)

A program must not depend on the relative positions of two LOCAL data
segments in storage.

All of the attribute restrictions given in Section 10.1.2 also apply to LOCAL
declarations.

BLISS-32 only: An alignment-attribute used in the declaration of a LOCAL
name must not have a boundary expression whose value is greater than 2.

10.5.3 Semantics

The data segment for a LOCAL name is allocated either in the current stack
frame or in a general register. In either of the following situations, a given
LOCAL data segment is always allocated in the current stack frame:

* The given data segment occupies more than a fullword.

Data Declarations

e The name of the given data segment is used as an independent address;
that is, its use is not confined to a fetch expression or to the left-hand-side
of an assignment expression.

In other situations, the choice between stack frame and register is based on
strategies that the compiler uses for code optimization.

10.5.4 Pragmatics

A temporary data segment (such as a LOCAL data segment) must be used for
a recursive variable in a recursive routine.

10.6 Stacklocal-Declarations

A STACKLOCAL data segment is always allocated in the current stack
frame. In all other respects, it is the same as a LOCAL data segment.

10.6.1 Syntax

stacklocal-declaration STACKLOCAL local-item ,... ;

The local-item is as defined in Section 10.5.1.

10.6.2 Restrictions

All of the attribute restrictions given in Section 10.1.2, and all the restrictions
given in Section 10.5.2 for LOCAL data segments also apply to STACK-
LOCAL declarations.

10.6.3 Semantics

The semantics given in Section 10.5.3 for LOCAL data segments apply to
STACKLOCAL data segments except that a STACKLOCAL data segment is
always allocated in the current stack frame.

10.7 Register-Declarations

A register data segment is a data segment that is always allocated in a general
register. In most other respects, it is the same as a LOCAL data segment. If
the declaration specifies a register-number, the data segment is allocated in
the specified register. Otherwise, the data segment is allocated in a register
chosen by the compiler.

An example of a register-declaration is:

REGISTER
STATUS = 5: BITVECTORL1OD1.
BETAS

This declaration associates the names STATUS and BETA with two general
registers. The register number for STATUS is given explicitly as 5 and only 10

Data Declarations 10-9

10-10

bits of that register are used. The register number for BETA is left to be
chosen by the compiler, and the full register is used.

10.7.1 Syntax

register-declaration REGISTER register-item ,... ;

register-item

register-name

{ = register-number}
nothing

{ : register-attribute ... }
nothing

register-name

name

register-number

compile-time-constant-expression

register-attribute

allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only
structure-attribute

field-attribute

initial-attribute

preset-attribute

10.7.2 Restrictions

The value of the register-number, if specified, must be in the range given
below for each dialect:

For BLISS-16:
For BLISS-32:
For BLISS-36:

0 through 5
0 through 11

0 through 12, if the governing linkage-attribute is
BLISS36C (the default), FORTRAN_FUNC, or FOR-
TRAN__SUB.

1 and 3 through 15, if the governing linkage-attribute is
BLISS10

The general rule for BLISS-36 is that the register-num-
ber must not specify a register in use as the stack pointer,
the frame pointer, or the argument pointer (if applica-
ble). The linkage-definition that governs the routine con-
taining the register-declaration controls the assignment
of registers for these uses.

A register specified by register-number must be PRESERVED or NOTUSED
in the linkage of any routine called in the containing block if the call occurs

Data Declarations

within the ‘useful lifetime’ of the register data segment. (That is, if the call
occurs between the first and last possible references to that segment.)

A register data segment must not occupy more than a fullword.
A register-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the declara-
tion of another routine, routine B. If a name is declared REGISTER in routine
A and is not declared in routine B, then the name cannot be used in routine B.
Such usage would be an “up-level” reference and is not permitted for register
data segments. :

All the attribute restrictions given in Section 10.1.2 also apply to REGISTER
declarations.

A name declared in a register-declaration must be used only as the operand of
a fetch expression or as the first operand of an assignment expression. (This
restriction does not apply to certain machine-specific-function parameters;
see the applicable BLISS User’s Guide.)

10.7.3 Semantics

If a register-number is given in the declaration of a register data segment,
then the data segment is allocated in that register. During execution of the
routine that contains the declaration, the register may be used for other pur-
poses, but none that conflict with the valid use of the allocated data segment.

A register data segment is similar to a local data segment in that it is created
on entry to the block in which it is declared and released on exit from that
block, and cannot be referenced from any lower-level contained routine-body.

10.7.4 Pragmatics

Standard register-names with appropriate predefined values are provided, as
builtin-names, for each BLISS dialect. In order to use these names with their
predefined values, they may be declared in a BUILTIN declaration (Section
18.3). The builtin register-names and values are as follows:

FOR BLISS-16 FOR BLISS-32
Name Value Name Value
RO 0 RO 0
R1 1 R1 1
R2 2 R2 2

R3 3

R4 4

R5 5 . .

SP 6 R11 11

PC 7 AP 12
FP 13
SP 14
PC 15

Data Declarations 10-11

FOR BLISS-36

The builtin register-names SP, FP, and AP are provided. The value defined
for each name depends upon the linkage-definition associated with the
routine in which the name is declared BUILTIN. See Chapter 13, on “Link-
ages’’.

10.8 Global-Register-Declarations

A global register data segment is a data segment that is created and allocated
in a given register in one routine, and may be made available for use in other
routines that are called by the declaring routine. Global register data seg-
ments are identified by name, and both the calling and called routine must
agree (through a matching set of register- and linkage-declarations) that a
particular global register data segment is available.

A global register data segment is the same as an ordinary register data seg-
ment with respect to its use within the declaring routine.

A GLOBAL REGISTER declaration establishes the name and actual register
assignment of a global register data segment and creates the storage (that is,
allocates the register). In order for the data segment to be available to a called
routine, that routine must specify the same name in an EXTERNAL REGIS-
TER declaration and must specify both the name and register-number in the
GLOBAL linkage-option of its governing linkage-definition.

10.8.1 Syntax

global-register- GLOBAL REGISTER register-item ,... ;
declaration
register-item register-name

= register-number

{ : register-attribute ... }

nothing

register-name name

register-number compile-time-constant-expression
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only

structure-attribute
field-attribute
initial-attribute
preset-attribute

register-attribute

10-12 Data Declarations

10.8.2 Restrictions

The register-number is constrained by the containing routine’s linkage as
described for ordinary register data segments in the first paragraph of Section
10.7.2, but is also constrained by the linkage-definition governing any called
routine that refers to the declared global register data segment. The inter-
routine requirements are described in Chapter 13, on “Linkage Declarations.”

A register data segment must not occupy more than a fullword.
A global-register-declaration must be contained in a routine-body.

Suppose the routine-body of a given routine, routine A, contains the declara-
tion of another routine, routine B. If a name is declared GLOBAL REGISTER
in routine A and is not declared in routine B, then the name cannot be used in
routine B. Such usage would be an “up-level” reference and is not permitted
for register data segments.

All the attribute restrictions given in Section 10.1.2 also apply to GLOBAL-
REGISTER declarations.

A name declared in a global-register-declaration must be used only as the
operand of a fetch expression or as the first operand of an assignment expres-
sion. (This restriction does not apply to certain machine-specific-function
parameters; see the applicable BLISS User’s Guide.)

If the linkage definition of a called routine specifies a global register data
segment, then the routine call must be in the scope of a global- or external-
register-declaration of the data segment.

BLISS-16/36 ONLY

If a call to a routine occurs in the scope of a global register data segment,
then the register-number of the data segment must be given in either the

GLOBAL or PRESERVE linkage-option of the called routine’s linkage defi-
nition.

BLISS-32 ONLY
If a call to a routine with CALL linkage-type occurs in the scope of a global
register data segment, then the register-number of the data segment must

be given in either the GLOBAL or PRESERVE linkage-option of the called
routine’s linkage definition.

If a call to a routine with JSB linkage-type occurs in the scope of a global
register data segment, then the register-number of the data segment must
be given in either the GLOBAL or NOTUSED linkage-option of the called
routine’s linkage definition.

10.8.3 Semantics

A global-register-declaration causes a register data segment to be allocated. A
global register data segment is a local data segment just like an ordinary
register data segment —it is created on entry to the block in which it is

Data Declarations 10-13

contained and released on exit from that block. However, unlike an ordinary
register data segment, a global register data segment is available in called
routines under certain conditions, described briefly below and more fully in
Chapter 13, “Linkages”.

In order to pass a global register data segment to a called routine, the linkage-
definition of the called routine must contain the name and register-number of
the data segment in its GLOBAL linkage-option. There may be more global
register data segments available at a call than are specified in the linkage for
the call; however, every global register data segment specified in the linkage
must be available at the call. Only those global register data segments speci-
fied in the linkage are available in the called routine.

10.9 External-Register-Declarations

10-14

An EXTERNAL REGISTER declaration specifies that a global register data
segment created in a calling routine is used in the routine containing the
declaration. This declaration must be used in combination with linkage defi-
nitions that include appropriate GLOBAL linkage-options.

10.9.1 Syntax

external-register- | pYTRRNAL REGISTER register-item ... ;

declaration
register-item register-name
{ = register-number}
nothing
{ : register-attribute ... }
nothing
register-name name
register-number compile-time-constant-expression
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only

structure-attribute
field-attribute
initial-attribute
preset-attribute

register-attribute

10.9.2 Restrictions

The register-number, if given, must be the same as that specified in the
GLOBAL linkage-option of the containing routine’s linkage definition.

Data Declarations

A register data segment must not occupy more than a fullword.

An external-register-declaration must be contained within a routine declara-
tion whose linkage definition specifies the named global-register-segment.

Suppose the routine-body of a given routine, routine A, contains the declara-
tion of another routine, routine B. If a name is declared EXTERNAL REGIS-
TER in routine A and is not declared in routine B, then the name cannot be
used in routine B. Such usage would be an “up-level” reference and is not
permitted for register data segments.

All or the attribute restrictions given in Section 10.1.2 also apply to EXTER-
NAL-REGISTER declarations.

A name declared in an external-register-declaration must be used only as the
operand of a fetch expression or as the first operand of an assignment expres-
sion. (This restriction does not apply to certain machine-specific-function
parameters; see the applicable BLISS User’s Guide.)

10.9.3 Defaults

If an external-register-declaration does not specify a register-number, the reg-
ister-number given for that external-register-name in the GLOBAL linkage-
option is assumed.

10.9.4 Semantics

An external-register-declaration specifies that a global register data segment
created in a calling routine is available for use. The declared name must also
be specified in the called routine’s linkage definition; however, not all of the
global register data segments specified in the linkage need be declared in an
external-register-declaration.

BLISS-16/36 ONLY

If a global-register-segment is specified in the routine’s linkage but is not
declared EXTERNAL REGISTER, then the contents of the register are
preserved by the called routine and the register is available for other pur-
poses.

BLISS-32 ONLY

If a global-register-segment is specified in the routine’s linkage but is not
declared EXTERNAL REGISTER, then in a routine with CALL linkage-
type the contents of the register are preserved by the called routine and the
register is available for other purposes. In a routine with JSB linkage-type,
however, the contents of such a register cannot be preserved and the regis-
ter is not usable in any way.

10.10 Map-Declarations .

A map-declaration is used to supply new attributes in the current block to a
name that is already declared.

Data Declarations 10-15

10-16

The most common use of a map-declaration is in the declaration of the for-
mal-names of a routine-declaration. Each formal-name is considered to be
declared as a fullword, unsigned scalar data segment in an imaginary block
that surrounds the routine-body. When those attributes are not suitable, a
MAP declaration is used to override these defaults. This use of a map-declara-
tion is discussed in Chapter 12, on “Routines”.

10.10.1 Syntax

map-declaration MAP map-item ,... ;
map-item map-name : map-attribute ...
map-name name
allocation-unit <= 16/32 Only
extension-attribute <= 16/32 Only
map-attribute structure-attribute
field-attribute
volatile-attribute

10.10.2 Restrictions

A map-declaration must lie within the scope of another declaration of the
same name. The latter declaration must be a data-declaration or a bind-data-
declaration.

BLISS-16/32 only: A structure-attribute must not appear in the same decla-
ration as an allocation-unit or an extension-attribute.

A field-attribute can appear only in a declaration that has a structure-attrib-
ute.

10.10.3 Semantics

The declaration of a name as MAP changes neither the value of the name nor
the contents of the data segment designated by the name. Instead, the storage
whose address is given by the declared name is re-interpreted in accordance
with the attributes given in the map-declaration.

Data Declarations

Chapter 11 Data Structures

11.1

11.2

11.3

114

11.5

Introduction to Data Structures. 11-1
11.1.1 The Abstract Definition of Data Structures 11-2
11.1.2 The Concrete Representation of Data Structures 11-3
11.1.3 The Programmed Description of Data Structures. 11-5
11.1.3.1 Field-References 11-5
11.1.3.2 Structure-Declarations 11-6
11.1.3.3 Structure Allocation 11-7
11.1.3.4 Structure-References 11-7
11.1.3.5 REF Structures 11-7
11.1.3.6 Interchangeable Structure-Declarations 11-8
11.1.3.7 Decimal Digit Arrays in BLISS-16 and BLISS-36 . . . 11-10
11.1.4 Conclusiono 11-11
Field-References« . . e 11-11
11.2.1 Syntax. e e e e e e e e e e 11-12
11.2.2 Restrictions 0 e e e e e e e 11-13
11.2.3 Default. e e e e 11-14
11.2.4 Semantics 0 e e e e e e e e e 11-14
11.2.56 Discussion 0 e e e e e e e e e e e 11-17
11.2.5.1 Examples 11-17
11.2.5.2 Field-References in Structure-Declarations 11-18
11.2.5.3 Field-References and Expressions in General. 11-19
11.2.5.4 Operations on Scalar Field Values 11-20
Structure-Declarations 0oL 11-21
11.3.1 Syntax. o ..o e e e e e e e e e 11-22
11.3.2 Restrictions e e e e e e 11-22
11.3.3 Semantics e e e e e e e 11-23
Structure-Attributes and Storage Allocation. 11-23
11.4.1 Syntax.o e e e e e e e 11-24
11.4.2 Restrictions e e e e 11-24
11.4.3 Semantics o e e e e e e 11-25
Field-Declarations 11-25
11.5.1 Syntax. e e e e e e e e 11-26
11.5.2 Restrictions 0 e e e e e e 11-26

11.5.3 Semantics o e e e e e e e e e 11-27

11.6 Field-Attributes 11-27

11.6.1 Syntax. o e e e e e e e e e e e e 11-27
11.6.2 Restrictions e 11-28
11.6.3 Semantics 11-28

11.7 Ordinary-Structure-References 11-28
11.7.1 Syntax. e 11-29
11.7.2 Restrictions e e 11-29
11.7.3 Semanticso e e 11-30
11.7.4 Discussiono 11-30

11.8 Default-Structure-References 11-31
11.8.1 Syntax. e e e 11-31
11.8.2 Restrictionso 11-32
11.8.3 Semantics 11-32
11.8.4 Discussion e e e e 11-32

11.9 General-Structure-References. 11-34
11.9.1 Syntax. e e e 11-35
11.9.2 Restrictionso 11-35
11.9.3 Semantics e e e 11-36
11.9.4 Discussion oo e e e 11-37
11.10 Predeclared Structures. 11-38
11.10.1 VECTOR Structures v v v v v v v v v oo 11-38
11.10.2 BITVECTOR Structures 11-39
11.10.3 BLOCK Structures« v v v v v v .. 11-40
11.10.3.1 A Typical Byte-Oriented BLOCK Structure. 11-41

11.10.3.2 BLOCK Field-References. 11-42

11.10.3.3 BLOCK Allocation. 11-42

11.10.3.4 BLOCK Structure-References. 11-43

11.10.3.5 BLOCK Field-Declarations. 11-44

11.10.4 BLOCKVECTOR Structures 11-45

11.11 Other Structures. v v v v v v i e e 11-46
11.11.1 “One-Origin” Vector Structures 11-46
11.11.2 “Bounds Checking” Vector Structures 11-46
11.11.3 Two-Dimensional Array Structures 11-47
11.11.4 Symmetric Array Structures. 11-47
11.11.5 Non-Continuous Block Structures 11-48
11.11.6 Partially Overlayed Structures. 11-50

11.11.7 General Purpose Structures for Default Structure References . . 11-52

Chapter 11
Data Structures

A data structure is the framework for a collection of values that are stored
under a single name. Certain frequently-used data structures are predefined
in BLISS; they are the vector, the bit vector, the block, and the blockvector.
The use of these data structures is described in Chapter 3 on “Values and
Data Representations”.

This chapter describes the features of BLISS that permit a programmer to go
beyond the predefined data structures and design special data structures that
fit a particular application.

The first section of this chapter discusses the concepts of data structures and
provides a detailed example of a specific data structure.

The next section describes the field-reference, which is the fundamental
BLISS mechanism for accessing an element of a data structure.

The next seven sections describe the features of BLISS that are used to define
and use a data structure; they are structure-declarations, structure-attrib-
utes, field-declarations, field-attributes, ordinary-structure-references, de-
fault-structure-references, and general-structure-references.

The final two sections return to the description of specific data structures.
One section gives the full definition of each of the BLISS predefined struc-
tures. The remaining section gives several examples of programmer-defined
structures.

11.1 Introduction to Data Structures

The BLISS facilities for programmer-defined data structures have the follow-
ing benefits:

1. Generality. If a specific application requires a data structure that is
different from any predefined data structure, the programmer can de-
fine a new data structure that fills the need.

11-2

2. Flexibility. 1If a specific application requires a different representation
for an existing kind of data structure (for example, one that requires less
space), the programmer can provide a new data structure that provides
the required representation.

3. Machine-Independence. If a program must depend on the architecture
of the computer in order to save space or execution time, that depen-
dence can be localized and concealed within the appropriate data struc-
ture definition.

4. Checking. If references must be checked for validity (for example, vec-
tor subscript in range), an appropriate check can be built into a pro-
grammer-defined structure definition.

The design for a new data structure has three parts: the abstract definition,
the concrete representation, and the programmed description. The abstract
definition and concrete representation are part of the design of a program;
although they may be written down as part of the documentation, they are not
a part of the BLISS program. On the other hand, the programmed description
of a data structure is part of the BLISS program in which the structure is
used.

This introductory discussion of data structures requires a specific example;
therefore, a data structure called a “decimal digit array” is carried through
each section of this discussion. The concrete representation and programmed
description for the example structure is first worked out for the VAX-11 and
BLISS-32. Further on, concrete representations and programmed descriptions
are given for the PDP-11 and BLISS-16, and the DECSYSTEM-10/20 and
BLISS-36.

11.1.1 The Abstract Definition of Data Structures

An abstract definition of a data structure specifies the structure, content, and
usage of a particular collection of data in terms of its application, not in terms
of a particular computer implementation. Indeed, the definition is abstract
only if it applies equally to all possible representations of the data.

The abstract definition of the decimal digit array might be:

A decimal digit array is a compact storage representation of a sequence of
decimal digits that permits reasonably quick access to individual digits.

The decimal digit array is not a predefined structure in BLISS and it is not
even an especially important structure. However, it is typical of the sort of
data structure that can be readily defined by a BLISS programmer.

The abstract definition of the decimal digit array establishes four characteris-
tics of the desired structure:

1. The word “compact’” asserts that the representation cannot waste
space, presumably because there will be many decimal digit arrays or
because some of them will have many elements.

2. The word “sequence”, as well as the word “array’” in the name of the
structure, indicates that the elements of the structure are ordered.

Data Structures

3. The words ‘“decimal digit” indicate that each element can have ten
distinct values, and these values are associated with the characters “0”,
“1”, and so on, through “9”,

4. The phrase “permits reasonably quick access to individual digits” pro-
vides important information about the usage of the data structure.

Observe the cautious wording of the third fact: it asserts that each element
accommodates a range of ten values (which requires somewhat less than four
bits), not that each element accommodates a decimal digit character code
(which would require seven or eight bits in ASCII).

11.1.2 The Concrete Representation of Data Structures

The concrete representation of a data structure determines which bits of
memory are occupied by the data and how these bits are interpreted. The
design of the representation depends on the following considerations:

1. The amount of storage available for the structure. If the structure is big,
it should not contain a large proportion of unused storage.

2. The amount of time available for access to the fields of the structure. If
the structure is accessed frequently, each access should be fast.

3. The effect of the representation on program development. If the ele-
ments must be accessed during debugging, that access should be con-
venient.

4. Compatibility with other representations of the same data. If a commit-
ment to a given representation has already been made, it may be neces-
sary to accept that representation even if it is not optimal.

The design of a concrete representation is difficult, especially at the beginning
of a project. The facilities of BLISS permit a programmer to change concrete
representations easily, even after the project is under way.

The possible representations for a data structure can be ranked according to
time and space requirements. The ranking can begin with those that have
compact storage but slow access and proceed to those that have fast access
but excessive storage.

As an example, such a ranking for the decimal-digit-array data structure on
the VAX-11 target system would be:

1. Since 32 bits can accommodate any nine-digit decimal number, the
array can be stored nine digits per fullword. In this representation,
however, access to a single digit requires considerable computation
(conversion of a thirty-two-bit binary integer to a nine-digit decimal
integer).

2. Since 4 bits can accommodate ten distinct values, the array can be
stored eight digits per fullword. This representation requires a conver-
sion to get from the element value to an ASCII character but the con-
version is a simple addition or OR operation.

Data Structures 11-3

11-4

3. Since the ASCII codes for decimal digits normally occupy eight bits
each, and since the byte is a natural unit of storage on VAX-11, the
array can be stored four digits per fullword. In this representation,
about half the storage is wasted, but access is quicker.

4. Since VAX-11 works best on fullword values, the array could be stored
one digit per fullword. This representation wastes a lot of storage, but
provides the most rapid access.

Ranking representations in this way is useful, but sometimes difficult. Many
considerations can affect the ranking, for example, both virtual and physical
memory management strategies. The ranking might even be different for
different models of the VAX-11.

Each of these concrete representations is correct for certain situations. For the
example under consideration, the representation in item 2 is chosen. That
choice is interesting because it leads to a data structure that is not predefined
in BLISS.

The representation just chosen for a decimal digit array can be diagrammed
for the VAX-11 as follows:

DDA

X[1].4 X[0],4 X

X[2],4

This diagram differs from those given in Section 3.2. In Chapter 3, the intent
was to represent data structures in a machine-independent way. Here, the
intent is to represent the specific layout of the data structure in VAX-11
storage.

The diagram depicts a sequence of bytes in VAX-11 storage. The first line of
the diagram (X[1] and X[0]) is the first byte allocated for the array. The
second line (... and X[2]) is the second byte. The third line suggests successive
bytes.

The diagram represents a specific instance of a decimal digit array. The name
of the array is X; that is, the value of X is the address of the first byte of the
array. The name X is written to the right of the diagram because of the
VAX-11 convention of indexing bits and bytes from right (low order) to left
(high order).

The diagram shows that the first element of the vector is called X[0] and
contains 4 bits. That element occupies the four low-order bits of the byte
whose address is X. The second element is called X[1] and occupies the four
high-order bits of the byte whose address is X. The third element is called
XI[2] and occupies the four low-order bits of the byte whose address is X+1.
The remaining elements of the structure are designated in a similar way.

Data Structures

The name DDA (for decimal digit array) at the top of the diagram refers to
the layout of the fields relative to the starting address of the structure. There
could be more than one DDA structure in storage at a given time, one at X
and others at other addresses.

11.1.3 The Programmed Description of Data Structures

Once the abstract definition and concrete representation of a structure have
been designed, the facilities of BLISS can be used to describe and use the
structure. The principal facilities are structure-declarations, structure-attrib-
utes, and structure-references. However, before these facilities can be de-
scribed, field-references must be considered.

11.1.3.1 Field-References — A field-reference is a BLISS construct that can
designate any portion of storage that is %BPVAL bits or less in size. For
example, a field-reference can designate a sequence of 15 bits starting with the
second bit of the addressable unit whose address is 3116.

A field-reference has the form:
addr < pos, size, ext >
where:
addr 1is interpreted as an addressable-unit address.

pos is the number of (least significant) bits skipped before the field
begins.

size is the number of bits in the field.

ext is 0 or 1 depending on whether unsigned or signed extension is used
in fetching the contents of the field.

The ext parameter can be omitted if unsigned extension is suitable. Sign
extension is described in Section 3.1.3, and a full description of field-refer-
ences is given in Section 11.2.

Restrictions on the values of addr, pos, and size are different in each BLISS
dialect because of differing capabilities of the respective target architectures.
Briefly stated, field-references in BLISS-32 can designate any field of up to
%BPVAL bits without regard to address boundaries; while field-references in
BLISS-16 and BLISS-36 must designate fields that are completely contained
within one fullword.

The BLISS-32 field-references for the decimal digit array X (diagrammed in
Section 11.1.2) are:

RO (first element, XI0])
Rid vl (second element, XI[1])

8.4 (third element, X[2])

‘e

Data Structures 11-5

11-6

The field-reference for the third element is typical; it is interpreted as follows:

Find the addressable unit (VAX-11 byte) whose address is X. Start at the
low-order bit of that unit of storage and skip forward across 8 bits. Use the
next 4 bits as the field.

In this definition, ‘“‘skip forward” means proceed toward higher order bits and
toward higher storage addresses.

Field-references can handle any memory access required in BLISS. However,
they are very dependent on the concrete representation of data structures.
The features described in the following sections are designed to confine the
use of field-references to a special place, the structure-declaration, and thus
localize the dependence of a program on representation.

11.1.3.2 Structure-Declarations — The following program fragment contains
the structure-declaration for BLISS-32 decimal digit arrays (DDAs).

STRUCTURE
DDACIS NI =
L{N+1)/2]
DDA<4*T 4 =3
LK N) -‘
OWN
“: DDALC1OI:

[31 = JXLB13

~

The first four lines of the example are the structure-declaration. Each line has
a different purpose, as follows:

1. “STRUCTURE” is the keyword for the declaration.

2. “DDAI; N] =" gives the structure-name, DDA, and the formal names I
and N. The name I before the semicolon is an access-formal, and is used
when an instance of the structure is referenced. The name N after the
semicolon is an allocation-formal, and is used when an instance of the
structure is allocated.

3. “(N+1)/2” is the structure-size and determines the number of address-
able units (bytes in this case) allocated for each instance of the struc-
ture.

4. “DDA<4*1,4>” is the structure-body and provides a field-reference for
each reference to the structure in the program. (Note that, because of
dialect-specific differences in field-reference limitations noted above,
this particular structure-body definition is valid in the general case only
in BLISS-32.)

Observe that in the structure-size and structure-body a fetch operator, “.”, is

. not used before a formal name to refer to the value of an actual parameter. In

this sense structure formal names are like macro formal names (see Chapter
16) and unlike routine formal names (see Chapter 12).

Data Structures

11.1.3.3 Structure Allocation — A structure-declaration does not allocate any
particular instance of a data structure; it just associates a name with a de-
scription of a structure.

An instance of a given structure is allocated when its name is used in a
structure-attribute in the declaration of a data segment name. The following
declaration allocates a 10-element instance, named X, of a decimal digit
array:

OWN

X3 DDALC10I3

The compiler determines how much storage to allocate for X by making a
copy of the structure-size, “(N+1)/2”, replacing N, the allocation-formal, by
10, and evaluating the expression. The result is 5 and thus five bytes are
allocated.

The example structure-size expression is also valid for BLISS-16 (assuming
an identical concrete representation for DDA), since the addressable-unit size
is the same. The structure-size expression required for BLISS-36, assuming a
similar concrete representation for DDA, is given in Section 11.1.3.7.

11.1.3.4 Structure-References — The following assignment contains two ex-
amples of references to the decimal digit array named X:

KESY = JXIB1:

When the program is compiled, the first structure-reference is replaced by a
copy of the structure-body from the declaration of DDA. Then, within the
structure-body, DDA is replaced by X and I is replaced by 5. The second
structure-reference is compiled in the same way, except that I is replaced by
6. The result is:

HOA%S 305 = K{A*B 433
The actual-parameter of a structure-reference need not be a numeric-literal as
in this example; it can be any expression. For example, the assignment
KL.J31 = JXL.J3+113

is expanded by the compiler into:
Kad®(,Jd3) »ds = (XOA%(,J3+1) 1433

In this case, the fields selected depend on the contents of J3 each time the
assignment is executed.

Similar examples of the structure-body expression for BLISS-16 and
BLISS-36, assuming an identical or similar concrete representation for DDA,
are given in Section 11.1.3.7.

11.1.3.5 REF Structures — It is sometimes useful to manipulate the addresses
of data structures. It is easy to manipulate addresses in BLISS, but the
compiler needs information about the structures to which the addresses refer.
This information is supplied with the help of the REF keyword and an appro-
priate structure-attribute in the declaration of storage for a structure address.

Data Structures 11-7

11-8

As an example of the use of REF, consider the following program fragment:

STRUCTURE
DDALIF NI =
L(N+1)/21
DDA A*T 4453

OWN
Ar DDAL1OZ,
¥: DDALC1OI3
OWN
ALPHA »
PDDA: REF DDAL1013%

e

IF +ALPHA EQL O THEN PDDA=X ELSE PDDA=Y3
PDDALS] = .PDDALCGIS

The interpretation of the final assignment depends on the value of PDDA and
the value of PDDA is determined, at run time, by the contents of ALPHA. If
ALPHA contains zero, the assignment is equivalent to:

ALS] = JKLGI3S

Otherwise it is equivalent to:
YIS = ,YIB13

A name that is declared with REF designates a data segment that contains
the address of a structure. Since an address always occupies a fullword, a
fullword is always allocated for such a name. In the example above, PDDA is
the address of a fullword that contains either the address X or the address Y.

When a name that is declared REF is used in a structure-reference (and is
therefore followed by a list of parameters in brackets), an extra level of in-
direction is automatically supplied. Thus in the assignment

PDDALS]1 = PDDALGBIS

the address of the structure to which a value is assigned is not PDDA but is
rather the contents of PDDA. Similarly, the address of the structure from
which a value is fetched is not PDDA but is rather the contents of PDDA.

When a name that is declared REF is not used in a structure reference, it is
interpreted without the extra level of indirection. (If this were not the case,
then the contents of a data segment used as a pointer to a structure could not
be changed.) Thus in the assignment:

PDDA = X3

the address of the data segment to which a value is assigned is PDDA.

11.1.3.6 Interchangeable Structure-Declarations — It is quite natural to use
different structure-declarations for the same abstract structure at different
stages in the development of a program. Three possible declarations for deci-
mal digit arrays are:

® The declaration already considered in the preceding sections is:

STRUCTURE
DDALCIS N1 =
[L(N+1)/2]1
DDA<A4*T +4x3

Data Structures

This declaration was presented as the one that implements the chosen
concrete representation for decimal digit arrays.

e A second declaration of DDA is:

STRUCTURE
DDALCIF NI =
[N
DDA~B*I:8>3

This declaration provides for faster access to the elements but uses twice
as much storage.

¢ A third declaration of DDA is:

STRUCTURE
DDALIF N1 =
[N]
BEGIN
IF I LSS 0 OR I GTR N-1 THEN ERROR(DDA, I)3
DDA
END<B*1:8%3

This declaration is oriented toward debugging. Specifically,

1. It uses a full byte (instead of 4 bits) for each element of the array.
Thus the examination of memory is easier.

2. It includes a check on the value of the subscript I to make sure that it
is in the range from 0 to N-1. Thus this class of errors is detected
automatically.

Thus this declaration can be used during the development of a program
and one of the previous declarations of DDA can be used for the produc-
tion version of the same program.

The debugging declaration just given illustrates an interesting feature of
structures. Suppose the following program fragment lies within the scope of
the debugging declaration:
OWN
¥: DDALC101,
¥: DDALZ2013

+

HKOoJd1 = JYL.WKI3

The compiler expands the assignment on the last line into the following as-
signment:

BEGIN

IF .J LSS 0 OR .,J GTR 9 THEN ERROR(DDA: .J)3

DDA
END=B*..J.8%

BEGIN

IF K L8S 0 OR +K GTR 19 THEN ERROR(DDA: .K)3
DDA

END<8% ., K 8>3

This example shows that the compiler saves the value of the allocation-pa-
rameter, N, each time the structure is allocated. For X this value is 10, for Y it
is 20. Thus this value can be used in the structure-body and, eventually, in
each structure-reference.

Data Structures 11-9

11-10

11.1.3.7 Decimal Digit Arrays in BLISS-16 and BLISS-36 — For a packed 4-
bits-per-digit representation of a decimal digit array in BLISS-36, a different
structure-size definition is required for the following reasons:

® The smallest (and only) addressable unit in BLISS-36 is the fullword,
rather that the byte as in BLISS-16 and BLISS-32.

® The 36-bit fullword of BLISS-36 can nicely accomodate nine 4-bit digits.

Instead of the BLISS-16/32 structure-size expression “(N+1)/2”, which allo-
cates one 8-bit addressable unit for each two elements required plus one unit

for an odd final element, the following expression is appropriate for
BLISS-36:

(N+8)/9

This structure-size expression allocates one 36-bit word for each nine ele-
ments required plus one word for a final (or only) group of less than nine.

As noted above, the BLISS-32 structure-size expression is also valid for
BLISS-16, since the respective target systems have the same basic storage
allocation unit (i.e., the byte).

The structure-body definition given for DDA in BLISS-32 needs to be modi-
fied in both BLISS-16 and BLISS-36 because neither of these dialects allows
the position value of a field-reference to exceed %BPVAL (as it can in

BLISS-32). In BLISS-16 the DDA structure-body can be defined as:
(DDA+I/Z)< (1 MOD 2)%4,4%
Alternatives to this expression, which are logically equivalent but better in
terms of object-code efficiency, are the following:
(DDA+I/2)<IF 1 THEN 4 ELSE 0,43
or
(DDA+I/2)< (1 AND 1)%4,4:
or
(DDA+I1/Z) <(1°2) AND 4,43

These alternatives are listed in order of increasing space efficiency, although
the first alternative results in the fastest code sequence.

In BLISS-36 the DDA structure-body can be defined as:
(DDA+1/89)< (1 MOD 9)%4,4%

To summarize, the BLISS-16 and BLISS-36 forms of the DDA structure-
declaration are the following:

¢ For BLISS-16—

STRUCTURE
DDALIS NI =
[L(N+1)/721]

(DDA+I/2)<(I"2) AND 4,433

Data Structures

e For BLISS-36—

STRUCTURE
DDALTS NI =
L(N+B) /9]

(DDA+I/9)< (1 MOD 9)=d.4%

The user’s guide for each BLISS dialect describes, under ‘“Transportability
Guidelines”, the development of generalized, fully transportable structure-
declarations. In particular, it describes a general packed-vector data structure
called GEN__VECTOR which produces the same concrete representation de-
scribed here as DDA on any target system.

11.1.4 Conclusion

All high level languages provide the programmer with a set of predefined data
structures. Some programming languages provide facilities for the definition
of new abstract data structures based on predefined data structures. BLISS
goes beyond such facilities and provides for the definition of new concrete
data structures.

Thus, when the need arises, a BLISS programmer can access storage just as
freely as an assembly language programmer can. The programmer can desig-
nate any addresses, any fields, any bits in storage.

The structure-declaration is the interface between the implementation of a
given data structure and its use in the program. On one side of the interface
lies the specific layout of the structure, with machine-specific details and an
appropriate concern for efficiency. On the other side of the interface are the
many references to the structure, each treating it as an abstract, machine-
independent entity. For each data structure, communication between the two
sides is by a single name, such as DDA used for the example in this section.

Because the predefined structures of BLISS use the same facilities of BLISS
as programmer-defined structures, they provide a point of departure for data
description rather than presenting a restrictive barrier.

The BLISS facilities for data structures are unusual and relatively compli-
cated. They depend on the combination of the various declarations, attrib-
utes, and references described in this chapter. The concluding sections of this
chapter, Section 11.10 on predeclared structures and Section 11.11 on typical
programmer defined structures, show how these facilities are combined to
define and use specific structures.

11.2 Field-References

A field-reference designates a sequence of up to %BPVAL bits of storage. It is
normally used as the operand of a fetch operator or the left operand of an
assignment operator. With certain restrictions, however, a field-reference can
be used in any context that requires an address value.

Data Structures 11-11

11-12

Structure-declarations use field-references to map abstract, machine-inde-
pendent structures into concrete, machine-specific storage units. Thus, when
suitably parameterized, they support the writing of programs that are effi-
cient and yet transportable from one target system to another.

Field-references should be used only in structure-declarations. The use of
field-references in any other context introduces machine-dependence in a
confusing and disorganized way.

Examples of field-references are given in Section 11.1.3.1.

11.2.1 Syntax

field-reference address { field-_selector}
nothing
address { primary }
executable-function
field-selector < position , size { , Sigr}-extension-ﬂag} S
nothing
p'osmon } expression
size
sign-extension-flag compile-time-constant-expression

In addition to the syntactic rules just given, the following syntactic rules are
required:

1. A field-selector that could be part of several fetch expressions is, in fact,
part of the innermost of them.

2. A field-selector that could be part of either an assignment expression or
a fetch expression is part of the fetch expression.

An example of an expression to which Rule 1 applies is:
++BETA<B 8>

This expression is interpreted as:
. (BETA<8,B8%)

rather than as:
,(\BETR)<8,8>

In this example, the given expression is composed of one fetch expression
within another, and Rule 1 is needed because one of the fetch expressions does

Data Structures

not have a field-selector. In the first interpretation, the field-selector is part of
the inner fetch expression, and is, therefore, applied to the data segment
whose address is BETA. In the second (nondefault) interpretation, the field-
selector is part of the outer fetch expression and, therefore, is applied to the
data segment whose address is .BETA.

An example of an expression to which Rule 2 applies is:

yRL0,Br = LA+

This expression is interpreted as:
(v0£0,83) = JA+1

rather than as:
(40)<0,8% = A+1

In the first interpretation, the field-selector is part of the fetch expression and
the assignment is made, by default, to a fullword. In the second (nondefault)
interpretation, the field-selector is part of the assignment expression, and the
fetch is made, by default, from a fullword.

11.2.2 Restrictions

The restrictions on the address, position, and size expression values in a field-
selector are different for each BLISS dialect, as follows:

BLISS-16 ONLY

The size of a field may range from 0 to 16 bits, inclusive, but a field must
not cross a machine-word boundary. This implies two sets of specific re-
strictions on the position (p) and size (s) values, as follows:

(a)If the field-selector is applied to a even-numbered byte (i.e., word-
aligned) address, then

O0<p
0<s <16
0<p+s <16

(b)If the field-selector is applied to an odd-numbered byte address, then

fi
<
<
<

R
T

8
<8

+
BLISS-32 ONLY

The value of the size expression may range from 0 to 32, inclusive, and the
field so specified may cross a longword boundary. More specifically, there is
no restriction on the position expression relative to storage-address bounda-
ries, and the restriction on size (s) is

0<s <32

Data Structures 11-13

11-14

BLISS-36 ONLY

The value of the size expression may range from 0 to 36, inclusive, but the
field so specified may not cross a machine-word boundary. More specifi-
cally, the restrictions on position (p) and size (s) are

0
0
0

The value of the sign-extension-flag must be 0 or 1.

b
s < 36

p+s < 36

IA A A

A field-selector must not be immediately followed by another field-selector.
For example,

V25041621842 = LBETA
is not valid. (Parentheses can be used to avoid this restriction. For example,
(+Z40,1B%)<8,2% = ,BETA

is a valid expression.)

Normally a field-reference is the operand of a fetch operator or the left oper-
and of an assignment operator. When a field-reference is used in any other
way, it must specify a field that begins on an addressable-unit boundary; that
is:

¢ The value of the position expression must be 0 or 8 in BLISS-16, must be
0 or a multiple of 8 in BLISS-32, and must be 0 in BLISS-36.

® The address expression must not be a register-name.

* The position and size expressions must be compile-time-constant-expres-
sions.

When the address in a field-reference is a register-name, the field-reference
must specify a field that lies entirely within the designated register; that is,
the position expression must be greater than or equal to 0 and the sum of the
position and size expressions must be less than or equal to %BPVAL.

11.2.3 Default

The default value for the sign-extension-flag is 0.

11.2.4 Semantics

A field-reference specifies a field of up to a fullword (%BPVAL bits) in size
relative to a given storage address. Certain aspects of the field-selector seman-
tics are dialect dependent, as described in the following three paragraphs.

In BLISS-16, the field is specified relative to a byte address, and the field
must be completely contained in the machine word containing the given byte.

In BLISS-32, the field is specified relative to a byte address, and the field
may occur anywhere in storage relative to the given byte.

In BLISS-36, the field is specified relative to a word address, and the field
must be completely contained in the given machine word.

Data Structures

Depending on the context in which it appears, a field-reference has one of the
interpretation given below. (These rules do not apply to field-references in the
structure-body of a structure-declaration, because the structure-body is not
interpreted as part of the declaration of a structure; rather, these rules apply
when the structure-body is used in the interpretation of a structure-reference,
as described in Sections 11.7, 11.8, and 11.9.)

e Fetch Context. If the field-reference is the operand of a fetch expression
(defined in Section 5.1), having the form:

. e2 field-selector
then evaluate the fetch expression as follows:
1. Interpret the address expression, €2, as follows:

a. If the address is a register-name, then call the register the selected
unit.

b. Otherwise, let a be the value of the address expression. Locate the
addressable-unit in storage whose address is a. Call this address-
able-unit the selected unit.

2. Let p be the value of the position expression. Locate the sequence of p
bits that starts with the low-order bit of the selected unit. Call these
bits the offset field.

3. Let s be the value of the size expression. Locate the sequence of s bits
that immediately follows the offset field. Call these bits the selected
field.

4. Obtain a fullword value as follows:
a. If s = %BPVAL, fetch the contents of the selected field.

b. If 0 < s < %BPVAL, fetch the contents of the selected field and
extend it to a fullword as follows:

1) If the value of the sign-extension-flag is 0, then extend the
selected field by adding zero-bits at the left.

2) OtherWise, extend the selected field by adding copies of the sign
bit (leftmost bit) of the selected field at the left.

c. If s = 0, use the fullword representation of zero.
5. Use the value just obtained as the value of the fetch expression.

e Assignment Context. If the field-reference is the left operand of an as-
signment expression (defined in Section 5.1), having the form:

el field-selector = e2
then evaluate the assignment expression as follows:

1. Locate the selected field of storage, relative to el, as in Steps 1
through 3 for the fetch context.

Data Structures 11-15

11-16

2. Let s be the value of the size expression and let v2 be the value of the
right operand, e2, of the assignment expression. Store a value as
follows:

a. If s = %BPVAL, store v2 in the selected field.

b. If 0 < s < %BPVAL, store the rightmost s bits of v2 in the se-
lected field.

c. If s = 0, do not store a value.
3. Use the fullword value of e2 as the value of the assignment expression.

® Other Contexts. If a field-reference appears in some other context, then
evaluate the field-reference as follows:

1. Let a be the value of the address expression and let p be the value of
the position. Compute

a + p/%BPUNIT

Observe that a restriction in Section 11.2.2 requires that the address
must not be a register-name, and the value of p must be zero or, in the
case of BLISS-16/32, a multiple of 8, so that the value of p/%BPUNIT
is an integer. Also observe that the values of the size and sign-exten-
sion-flag expressions are not used, but the restrictions on these values
still apply.

2. Use the value just computed as the value of the field-reference.
The following considerations apply to the interpretation of field-references:

¢ The order in which the address, position, size, and sign-extension-flag
expressions are evaluated is not defined (see Section 5.1.4).

* The sign-extension-flag is ignored in all contexts except a fetch expres-
sion.

® The description of the field-reference just given uses phrases like “se-
quence of p bits that starts with...” and “sequence s of bits that immedi-
ately follows...”. Thus it assumes an ordering of bits in storage. That
ordering, based on numeric significance, is:

For BLISS-16 and BLISS-32

Bit 0 The low-order bit of byte n
Bi.t 7 The High-order bit of byte n

Bit 8 The low-order bit of byte n+1

Bit 15 The high-order bit of byte n+1

Data Structures

BLISS-32 ONLY
Bit 16 The low-order bit of byte n+2

Bi.t 23 The high-order bit of byte n+2
Bit 24 The low-order bit of byte n+3

For BLISS-36
Bit 0 The low-order bit of word n

Bi't 35 The };igh-order bit of word n

e Observe that in BLISS-32, although the selected field cannot be longer
than 32 bits, it can occur anywhere in storage, crossing boundaries be-
tween bytes, words, or longwords.

11.2.5 Discussion

The BLISS bit numbering convention, defined above, is consistent across the
BLISS dialects: bit-position 0 is always the “rightmost” or least significant
bit of the specified addressable unit, for all target systems.

Several aspects of field-references are discussed in the following subsections.
First, some examples are given to illustrate various cases. Second, the place-
ment of a field-selector in the definition of a structure is discussed. And third,
the general and fundamental relationship of field-references to expressions is
discussed.

11.2.5.1 Examples — Field-references used in fetch and assignment contexts
are illustrated throughout this chapter and do not require further elaboration
here. However, field-references used in other contexts involve some special
considerations.

As stated in Section 11.2.4, a field-reference that is not in a fetch or assign-
ment context computes a value according to the formula

b + p/%BPUNIT

In BLISS-32 and to a limited extent in BLISS-16, such field-references allow
the programmer to compute the address at which a field begins. Such address.
values might be assigned to another data segment for later use or passed as
actual-parameters of a routine-call. Observe that the restrictions in such cases
(the byte-address is not a register name, position and size are compile-time

Data Structures 11-17

11-18

constant values, and the position is zero or a multiple of 8) assure that the
compiler can verify that the field does begin at a byte address and hence, that
the above formula can be computed.

Consider the following examples:

Example Comment
A = ¥ The address of the data segment X is assigned to A.
A = Mi0,83 The address of the data segment X is assigned to A (as in

the previous example).

A = X<10,12> Invalid. The field-reference does not designate a field
that begins at a byte address.

A = XiB8,8: Invalid in BLISS-36; valid in BLISS-16/32. The address
of the data segment X plus 1 is assigned to A. This field-
reference is equivalent to the field-reference (X+1)<0,8>.

A= MYl Invalid. The ‘position expression is not a compile-time
constant value and, therefore, the field might not begin at
a byte address.

Observe that in BLISS-16 the effective range of p/8 is simply 0 or 1; in
BLISS-32 the range of p/8 is unrestricted; and in BLISS-36 the range of p/36
is (only) 0. Consequently, the value of a field-reference in BLISS-36 is effec-
tively the same as the address part of the field-reference and the term
“p/%BPUNIT” in the formula for the value has no practical utility.

11.2.5.2 Field-References in Structure-Declarations — The definition of a
structure-name can include a field-reference as the structure-body (see Sec-
tion 11.3), but when the structure-body involves a block, a common error is to
place the field-selector inside the block instead of following the block.

An example of correct placement of the field-selector following the block was
given in Section 11.1.3.6; it is repeated here:

STRUCTURE
DDALCISNT =
LN1
BEGIN
IF T LSS 0 OR I GTR N-1 THEN ERROR(DDA, I)3
DDA
END<B*I 8>3

Suppose the last two lines of this example are coded as follows:

DDA<B*I ,83
END

This coding has a quite different meaning than the one intended. Because the
field-reference is contained inside the block, the rule for a field-reference in a

Data Structures

context other than a fetch or assignment context always applies. When the
structure-reference is used in a fetch or assignment, a fullword fetch or assign-
ment results according to the rules in Section 5.1 (assuming that the restric-
tions on field-references do not result in an error).

As can be seen in this example, the placement of the field-selector following
the block is essential for the desired meaning.

11.2.5.3 Field-References and Expressions in General — Consider again the
first two examples in Section 11.2.5.1. They are:

A = %

A = X{0,8%

In both cases, the address of the data segment X is assigned to A. These
examples are especially interesting because they hint at a BLISS language
design principle that ties together field-references and expressions in a very
general way.

The BLISS rules regarding expressions and data segments given elsewhere in
this manual can be restated (in part) in the following way:

1. The declaration of a data segment name associates an implicit, default
field-selector with the name, which is determined as follows:

a. If the data segment is a scalar, then the default field-selector is <O,
size, sign> .vhere:

i. The size ve 1e is, in BLISS-16 and BLISS-32, a multiple of
%BPUNIT determined by the explicit or default allocation-unit,
and in BLISS-36 is simply %BPUNIT, that is, 36.

ii. The sign value is, in BLISS-16 and BLISS-32, 0 or 1 according to
the explicit or default extension-attribute, and in BLISS-36 is
always 0.

b. If the data segment is structured, then the default field-selector is
<0, %BPVAL, 0>. (This default applies only when the data segment
name does not appear in a structure-reference.)

- 2. For any expression other than a data segment name, the default field-
selector is <0, %BPVAL, 0>. (This default applies only when the ex-
pression does not appear as the address-expression of a default-struc-
ture-reference.)

According to these rules, every expression in a BLISS program can be thought
of as having a default field-selector.

When the semantics for field-references given in Section 11.2.4 is applied to
expressions with default field-selectors as described here, the resulting inter-
pretation is equivalent to the semantics given in Chapter 5. The description

Data Structures 11-19

11-20

given there is used because it is simpler and more intuitive for the common
cases. The description given here presents an important part of the conceptual
foundation of BLISS.

11.2.5.4 Operations on Scalar Field Values — When all values involved in a
calculation occupy fullwords, the programming involved is relatively straight-
forward. Fullwords accomodate maximum-size BLISS values and assignment
from one fullword to another never modifies a value.

When a scalar field value — a value smaller than a fullword and not part of a
data structure —is involved in a calculation, however, problems can arise.
They can arise either through assignment of a large value to the small field, or
through incorrect extension of the contents of the field. An example of the
former type of problem is the inadvertent assignment of a fullword value to a
field that is not large enough to accomodate the significant portion of the
fullword. Obviously some significance will be lost in the stored result.

The latter type of problem can be more subtle; for example:
OWN

K
4
1

e
Ke0,8% = -173
LY -

= WKL 0BE + 13§

4

For purposes of discussion, assume that there is some good reason for using an
8-bit field relative to address X (which cannot be determined from inspection
of the program fragment). Since this field occupies less than a fullword, when
fetched it is extended before being incremented and assigned to Y. And since
the extension for the field is unsigned by default, the extended field value
becomes 255 rather than -1. Thus the value of Y becomes 256 rather than 0,
presumably not the intended result,

The program fragment does not violate any rules of BLISS; it is valid. How-
ever, since it assigns a negative number, -1, to a field that is by implication
unsigned, the program fragment is at least ambiguous in its intent, if not
incorrect.

Depending on whether the result obtained was or was not the one intended,
the program fragment can be altered in one of the following ways:

¢ Change the numeric-literal from -1 to 255. This change does not affect
the value assigned to Y, but does make clear that the result is the ex-
pected one.

* Replace the field-selectors shown with <0,8,1>, indicating signed value
extension. This change causes 0 to be assigned to Y.

In BLISS-16 or BLISS-32, the problems just described can also arise through
the use of an allocation-unit that causes field allocation of a scalar data

Data Structures

segment; that is, through the use of BYTE in BLISS-16, or BYTE or WORD
in BLISS-32, as an attribute in a data declaration. This is due to the implicit
relationship between allocation-units and field-selectors. An equivalent pro-
gram fragment that uses the BYTE allocation-unit rather than explicit field-
references to produce results identical to those described above is given in
Section 5.1.5.3.

11.3 Structure-Declarations

A structure-declaration describes the organization of a data structure. It spec-
ifies (or implies) a field-reference for every possible reference to the structure
and thus defines the layout of the structure in storage. It also specifies an
expression to be used to determine the amount of storage to be allocated when
a structure is associated with a name in a data-declaration.

An example of a structure-declaration in each of the BLISS dialects is:
e In BLISS-16 —

STRUCTURE
VECTORLI§ Ny UNIT=2, EXT=0] =
[N#UNITI

(VECTOR+I®UNIT)<0 sB*UNIT sEXT 53
e In BLISS-32 —

STRUCTURE
VECTORLIS Ny UNIT=4, EXT=01 =
[N#UNIT]

(VECTOR + I®UNIT)<Q ,8%UNITEXT>S

e In BLISS-36 —

STRUCTURE
VECTORLIS N1 =
[N]
(VECTOR+I)<0,3B%3

These are equivalent declarations of the BLISS predeclared structure named
VECTOR, but they do not differ in any significant way from structure decla-
rations written by the programmer.

The access-formal in this declaration is I and the allocation-formals are N
and, in BLISS-16/32, UNIT and EXT. UNIT and EXT have default values of
%UPVAL and 0, respectively. If in BLISS-16 or BLISS-32 a VECTOR struc-
ture-attribute does not specify allocation-actuals for UNIT and EXT, then
these default values are used. The structure-size expression is N*UNIT and
the structure-body is (VECTOR + I*UNIT)<0,%BPUNIT*UNIT,EXT>.

Observe that in the BLISS-36 VECTOR declaration, the allocation-formals
UNIT and EXT are not included. This is so because BLISS-36 does not have
the corresponding allocation-unit and extension-attribute (used in data-decla-
rations in the other two dialects), and therefore these formal parameters are of

Data Structures 11-21

11-22

no practical use. If, however, these formal parameters were expressed in the
BLISS-36 declaration and given their default values of %UPVAL (1 in
BLISS-36) and 0 (unsigned-extension), respectively, the BLISS-36 declara-
tion would be not only explicitly equivalent — varying only in the dialect-
specific values of %UPVAL and %BPUNIT — but also operationally valid.

11.3.1 Syntax

structure-declaration | STRUCTURE structure-definition ,... ;

structure-definition structure-name

{ access-formal ,... }
nothing

{ ; allocation-formal ,... }
nothing I

_ { [structure-size] }
nothing

structure-body

allocation-formal allocation-name { - allpcatxon-default}
nothing

structure-size } expression

structure-body

structure-name

access-formal name

allocation-name

allocation-default compile-time-constant-expression

11.3.2 Restrictions

A primary of a structure-size expression must be either an allocation-name or
a compile-time-constant-expression. When a compile-time-constant-expres-
sion is substituted for each allocation-name in the expression, the resulting
expression must be a compile-time-constant-expression.

Data Structures

If the structure-body expression contains a block, only the following declara-
tions can appear in the block:

LOCAL * EXTERNAL LITERAL
STACKLOCAL EXTERNAL ROUTINE
REGISTER LITERAL

EXTERNAL

11.3.3 Semantics

The structure-size expression of a structure-declaration is utilized by the com-
piler when the structure name appears in a structure-attribute of a data-
declaration. It specifies the number of addressable units to allocate for the
declared data segment.

The structure-body is utilized each time a structure-reference appears in an
expression. It specifies a replacement for the structure-reference that consists
of an expression. Observe that a field-reference is one form of expression.

The use of these portions of the structure-definition is described in the follow-
ing sections on structure-attributes and storage allocation (Section 11.4) and
structure-references (Sections 11.7, 11.8, and 11.9).

11.4 Structure-Attributes and Storage Allocation

The form of a data segment is determined when its name is declared. If a
structure-attribute appears in the declaration, then that structure-attribute
determines the structure of the data segment both for purposes of storage
allocation and access. If no structure-attribute appears, then the data seg-
ment is assumed to be a scalar.

A structure-attribute in the declaration of a name provides two kinds of infor-
mation. First, it provides a structure-name and thus associates a structure-
definition with the name of the data segment. Second, it provides the alloca-
tion-actual parameters for the structure-definition, and thus specifies the
number of addressable units of storage to be allocated for the data segment.

Observe that the parameters in a structure-attribute are positional; that is,
the formal names given in the structure-declaration are not used as keywords
in a structure-attribute.

The complete syntax and semantics of the declarations in which a structure-
attribute can appear are given in the chapters on data declarations (Chapter
10) and on binding (Chapter 14). This section describes only the structure-
attribute itself and how it is used to determine the size of a structured data
segment.

Data Structures 11-23

11-24

11.4.1 Syntax

structure-attribute { REF, } structure-name
nothing
{ [allocation-actual ,...] }
nothing
structure-name name 7

allocation-actual

compile-time-constant-expression

allocation-unit <= 16/32
extension-attribute <= 16/32
nothing

16/32 Only

allocation-unit

WORD

LONG }<= 32 Only
{ BYTE

16/32 Only

extension-attribute

{ SIGNED }
UNSIGNED

11.4.2 Restrictions

BLISS-16/32 ONLY

An allocation-unit used directly as an attribute cannot appear in the same
declaration as a structure-attribute. Similarly, an extension-attribute used
directly as an attribute cannot appear in the same declaration as a struc-

ture-attribute.

Unless the structure-attribute begins with REF or is in an EXTERNAL,
MAP, or BIND declaration:

1. A structure-size expression must appear in the definition of the struc-

ture-name, and

2. A non-null allocation-actual parameter must be given for each alloca-
tion-name that appears in the structure-size expression and does not
have an allocation-default.

A non-null allocation-actual parameter must be given for each allocation-
name that appears in the structure-body and does not have an allocation-

default.

Data Structures

11.4.3 Semantics
The allocation of a structure is performed by the compiler as follows:

1. If in BLISS-16 or BLISS-32 an allocation-unit or extension-attribute
keyword appears as an allocation-actual, it is replaced by a constant
value as follows:-

Keyword Replaced by

LONG 4 <= 32 Only
WORD 2
BYTE 1
SIGNED 1
UNSIGNED 0

2. The allocation-actual parameters are evaluated and the values are asso-
ciated with the corresponding allocation-names in the specified struc-
ture-definition.

3. Any allocation-name that does not have a value already associated with
it from Step 2, but does have an allocation-default value, is associated
with its default value.

4. The amount of storage to allocate for the declared name is determined
as follows:

a. If the structure-attribute appears in an EXTERNAL, MAP, or
BIND declaration, then no storage is allocated.

b. If the structure-attribute begins with the keyword REF, then one
fullword of storage is allocated.

c. Otherwise, the structure-size expression is evaluated using the val-
ues that are associated with each of the allocation-formal names.
The resulting value specifies the number of addressable units of
storage that are allocated.

5. The structure-name and the values associated with each allocation-
name are recorded with the data-segment name being declared, for use
when the data-segment is referenced.

11.5 Field-Declarations

The FIELD declaration is used to define names of fields in BLOCK and
BLOCKVECTOR predeclared structures, and in programmer-defined struc-
tures that are similar to BLOCK.

Data Structures 11-25

11-26

A BLISS-36 example of a field-declaration is:

FIELD

DCB_FIELDS =

SET

DCB_A
DCB_B
DCB..C
DCB..D
DCB_E
TES S

noion o#ou

The field-names declared here are DCB__A, DCB__B, and so on. Each name
can be used as a parameter in a structure-reference to represent a sequence of
For example, DCB_A can be used to represent
“0,0,36,0”. (In other examples, the field-names might represent more or less

four access-actuals.

LOs0+36:01,
L1+0,6,01,
L1s682124+01
[1:18,18401,
[2,0:,364,01

than four access-actuals.)

The example field-declaration just given also provides a field-set-name,
DCB_FIELDS. That name is used to refer to the field-names collectively as
when, for example, they must be mentioned in a field-attribute.

The field-declaration is a special-purpose facility that can best be explained
in the context of a complete example of structure declaration and use. Such

an example is given in section 11.10.3.

11.5.1 Syntax

field-declaration

field-set-definition
FIEL].) { field-definition }

field-set-definition

field-set-name =

field-name

SET
field-definition ,...
TES
field-definition field-name = [field-component ,...]
field-set-name }
name

field-component

compile-time-constant-expression

11.5.2 Restrictions

A field-name can only be used as an access-actual parameter of a structure-
reference, a parameter of a field-attribute, or in the %FIELDEXPAND lexi-

cal-function.

A field-set-name can only be used as a parameter of a field-attribute.

Data Structures

11.5.3 Semantics

The field-declaration defines names for use as access-actual parameters of
structure-references to designate fixed fields in fixed data structures. As a
notational convenience, a set of such field-names can be declared and referred
to by a single name. Observe that both field-names and field-set-names follow
the normal rules concerning scope and uniqueness of names; there is no con-
cept like the “qualified names” of COBOL or PL/I.

When a field-name appears as an access-actual parameter of a structure-
reference, it is replaced by the list of field-component values from the field-
definition. (See example in Section 11.10.3.5.) These values provide one or
more of the access-actual parameters used in the evaluation of the structure-
reference. A field-name need not itself supply all of the actual parameters
required for the reference. (While this replacement has some of the character-
istics of a macro expansion, field-names are not macro-names; in particular, a
field-name is not valid in contexts other than a structure-reference.)

The field-attribute specifies the set of field-names that can appear in ordi-
nary-structure-references for the indicated data segment. If no field-attribute
is given, then no field-name is valid.

Any field-name can be used in a general-structure-reference.

11.6 Field-Attributes

A field-attribute is used in the declaration of a structured data segment name;
that is, in the same declaration with a structure-attribute. The field-attribute
supplies field-names for some or all of the fields in the structured data seg-
ment, either directly by listing field-names or indirectly by giving one or more
field-set-names, or both.

An example of the use of a field-attribute is:

OWN
ALPHA: BLOCKIDCB_SIZEl FIELD(DCB.FIELDS);

In this example, the field-attribute associates the field-set-name DCB__
FIELDS with the data segment name ALPHA.

Like the field-declaration, the field-attribute can best be explained in the
context of a complete example of structure declaration and use. Such an
example is given in Section 11.10.3.

11.6.1 Syntax

field-name }
field-set-name o)

field-attribute FIELD ({

field-name }
name

field-set-name

Data Structures 11-27

11.6.2 Restrictions

Although a field-set-name can appear as a field-attribute parameter in a data
segment declaration (as the syntax shows), it cannot be used in a structure-
reference to the data segment. The individual field-names associated with the
field-set-name must be used instead.

A field-attribute can be used only in a declaration that also has a structure-
attribute.

11.6.3 Semantics

A field-attribute specifies the set of field-names that may appear in an ordi-
nary-structure-reference to the data segment declared with the given field-
attribute. A field-set-name in a field-attribute implies a defined set of field-
names that may so appear. If no field-attribute is given, then no field-name is
valid in such a reference.

11.7 Ordinary-Structure-References

11-28

A structure-reference is used to access a part of a structured data segment.
The part of the segment that is accessed is determined by the access-actual
parameters in the structure-reference. For example, a structure-reference for a
vector has one access-actual parameter that specifies the element of the vector
to be accessed.

Three kinds of structure-reference are provided: ordinary, default and general.
The ordinary-structure-reference is by far the most commonly used form. It
gives the name of a data segment and relies on the compiler to determine the
appropriate structure from the declaration of the segment name. A default-
structure-reference is similar, but the address of the data segment is given by
an expression, often a preceding ordinary- or default-structure-reference, and
relies on the compiler to determine the structure from the default structure
specification given in a switches-declaration or module-switch. A general-
structure-reference is self contained. It gives all the information necessary for
the access.

Suppose the declaration of A is:
OWN A: VECTORL1013

An example of an ordinary-structure-reference is:
AL, J]

The compiler uses the declaration of A to find the kind of structure that is
being accessed. This ordinary-structure-reference is a reference to a VECTOR
that consists of 10 elements. The structure-body that is declared for VECTOR
is used in combination with the allocation-actuals in the declaration of A and
the access-actuals in the structure-reference to determine the field-reference
for the appropriate element of the vector.

Data Structures

Suppose the following set of declarations are given:

OWN A: VECTORLC1OI1S
SWITCHES STRUCTURE (BLOCK [11)3
FIELD FL LOs0yUBPVAL/Z2,03

FR LOYABPVAL/Z2yUBPYAL/24013

An example of a default-structure-reference is:
ALV JILFL]

The compiler processes the initial ordinary-structure-reference, A[.J], as de-
scribed in the preceding example. The field-reference that results is then used
as the address part of a subsequent structure-reference. The compiler uses the
specification of the default structure in the switches-declaration to find the
kind of structure that is being accessed. In this example the default-structure-
reference is a BLOCK that consists of one fullword. The structure-body that is
declared for BLOCK is used in combination with the allocation-actuals in the
default structure specification in the SWITCHES declaration to determine
the field-reference for the appropriate field in the j’th element of segment A.

An example of a general-structure-reference is:
VECTORLA, +J5 101

This general-structure-reference is equivalent to the ordinary-structure-refer-
ence given above.

Ordinary-structure-references are described in this section. Default- and gen-
eral-structure-references are described in the next two sections.

11.7.1 Syntax

default-structure-reference
general-structure-reference

ordinary-structure-reference
structure-reference

ordinary-structure-

reference segment-name [access-actual ,...]
segment-name name
field-name
access-actual expression
nothing

11.7.2 Restrictions
A structure-attribute must be associated with the segment-name.

If field-names are used as access-actuals in the structure-reference, then a
field-attribute designating those field-names must be associated with the seg-
ment-name.

Data Structures 11-29

11-30

An access-actual parameter must be given for each access-formal name that
appears in the structure-body of the associated structure-definition.

11.7.3 Semantics

The interpretation of an ordinary-structure-reference is:

1.

Use the segment-name to get the structure-body of the associated struc-
ture-definition and to gef the values associated with each of the alloca-
tion-names for that segment-name.

If the structure-attribute for the segment did not include the keyword
REF, then determine the value of the data segment name (which is the
address of the data segment) and associate that value with the structure
name.

If the structure attribute did include the keyword REF, then fetch the
fullword contents of the segment-name and associate that value with
the structure name.

If one or more access-actuals is a field-name, replace each field-name
with its defined sequence of field-component values. This replacement
may increase the number of access-actual expressions in the resulting
structure-reference.

Evaluate the access-actual expressions and associate the i'th access-
actual value with the i’th access-formal name in the structure defini-
tion. The order of evaluation of the access-actual expressions is not
defined (see Section 5.1.4).

Evaluate the structure-body using the values associated with each of
the allocation-formal names, the access-formal names, and the struc-
ture-name.

Use the resulting expression (which is typically a field-reference) in
place of the structure-reference.

11.7.4 Discussion

An important characteristic of structure-references is that the access-actual
expressions in a structure-reference are each evaluated exactly once. The
resulting value is used in the structure-body evaluation in each place that the
access-formal appears.

Consider the following declarations:

KTERNAL ROUTINE

A
AR S
A
L4

F3

STRUCTURE

AYZLAIBI =
[B1
(XYZ+X(AY+Y (A)) 3

OWN ABC: XYZL[413

Data Structures

Given these declarations, the structure-reference
ABCIF ()1

is logically equivalent to

BEGIN

LOCAL TEMP:

TEMP = F()3
HKOLTEMP)Y + Y (,TEMP)
END

The routine F is called once in the structure-reference ABC[F()] and the
resulting value is used twice.

Since structure-references are handled by the compiler in a manner similar to
macro expansions and they are, in fact, compiled to in-line code, it is natural
to think of structure-references as macro calls; however, the preceding discus-
sion shows that the interpretation of the actual parameters is more similar to
that for routine-calls.

11.8 Default-Structure-References

A default-structure-reference is used when an ordinary-structure-reference
cannot provide the required field-reference. This usage arises when the ad-
dress of the accessed data segment is an expression, so that the name of the
data (which is part of an ordinary-structure-reference) is not known. When
this occurs frequently in a block or module, it can be convenient to give a
default structure-attribute in a switches-declaration or module-switch to pro-
vide the structure information to be used for all such occurrences.

An example of a default-structure-reference has already been given in the
introduction of Section 11.7. A more extensive example is given in Section
11.11.7.

11.8.1 Syntax

default-structure- address [access-actual ,...]
reference
address { primary }
executable-function
field-name
access-actual { expression
nothing

Data Structures 11-31

11-32

11.8.2 Restrictions

The address of a default-structure-reference must not be the name of a data
segment declared with a structure-attribute. (If the address is the name of a
data segment declared with a structure-attribute, then the structure-reference
is an ordinary-structure-reference and is interpreted as described in Section
11.7.)

A default-structure-reference must only occur in the scope of a non-empty
STRUCTURE switch-item (see Section 18.2).

An access-actual parameter must be given for each access-formal name that
appears in the structure-body of the definition of the default structure.

11.8.3 Semantics
The interpretation of a default-structure-reference is:

1. Use the default structure-attribute to get the structure-body of the asso-
ciated structure-definition and to get the allocation-actual values asso-
ciated with each of the allocation-names of the structure.

2. If the default structure-attribute does not include the keyword REF,
then associate the value of the address of the structure reference with
the structure-name. If the default structure-attribute does include the
keyword REF, then fetch the fullword contents of the address value,
and associate the result with the structure-name.

3. If one or more access-actuals is a field-name, replace each field-name
with its defined sequence of field-component values. This replacement
may increase the number of access-actual expressions in the resulting
structure-reference.

4. Evaluate the access-actual expressions and associate the i’th access-
actual value with the i’th access-formal name in the structure-defini-
tion. The order of evaluation of the access-actuals is not defined (see
Section 5.1.4).

5. Evaluate the structure-body using the values associated with each of
the allocation-formal names, the access-formal names, and the struc-
ture-name.

6. Use the resulting expression (which is typically a field-reference) in
place of the structure-reference.

11.8.4 Discussion

Default-structure-references are very similar to ordinary-structure-references.
The differences are:

1. A default-structure-reference uses the structure information established
in a default structure-attribute, and hence, must occur in the scope of a

Data Structures

non-empty STRUCTURE switch-item. In contrast, an ordinary-struc-
ture-reference uses the structure information associated with the decla-
ration of a data segment name and is independent of whether or not a
default structure-attribute is established.

2. A default-structure-reference permits any field-name to be used as an
access-actual parameter. (In this respect it is like a general-structure-
reference, see Section 11.9.) There is no way to specify a default field-
attribute to go with the default structure-attribute. In contrast, an ordi-
nary-structure-reference permits only those field-names that are given
in the field-attribute of the data segment declaration.

Observe that when an ordinary- or default-structure-reference occurs as the
address part of another default-structure-reference, the interpretation occurs
from left to right. That is, a structure-reference of the form

expl actuals ,...] [actuals ,...]
is equivalent to
(exp [actuals ,... 1) [actuals ,...]

Also observe that such a structure-reference is a primary and is interpreted
before any operators are applied. For example,

¥ = ,¥L[11C21 is equivalent to ¥ = ,(yri1)[21
and
¥ o= 4 YL[11021031 is equivalent to ¥ = ., ((Y[11)021)031

Consider the following block:

BEGIN

SWITCHES STRUCTURE(VECTORL101) S

OWN X5

KLO1 = 13 Walid
BEGIN
SWITCHES STRUCTURE ()3
KLO1 = 13 Invalid
END

LR}

END

The declaration of X in this example does not associate the structure-attrib-
ute VECTOR([10] with X. Segment X is a scalar by default and is allocated a
single fullword.

The first occurrence of X[0], in the fifth line of the example, is a valid default-
structure-reference. It cannot be an ordinary-structure-reference because no
structure-attribute is associated with X. The second occurrence of X[0], in the
tenth line of the example, is invalid because the default structure-attribute is
empty and, as before, there is no structure-attribute associated with X.

Data Structures 11-33

As another example, consider the block

BEGIN
SWITCHES STRUCTURE(VECTORLI10OI) S
OWN X: BITUVECTORL2013
ALWI1 = 13
XIDWI1 = 13
END

In this example, the structure-reference X[.I] is an ordinary-structure-refer-
ence because the structure-attribute BITVECTORI20] is given in the declara-
tion of X. Thus, the interpretation of the structure-reference uses the
BITVECTOR structure (and not the VECTOR structure).

The structure-reference (X)[.I] is a default-structure-reference because (X),
the base address of the reference, is not a data segment name. The value of
the expression (X) is, of course, the same as the value of X, but the BITVEC-
TOR structure-attribute associated with X is lost in the evaluation of the
expression (X), just as it is in the evaluation of the expressions (X+4) or even
(X+0). Thus, the interpretation of the structure-reference (X)[.I] uses the
VECTOR structure (and not the BITVECTOR structure).

The above examples are not realistic examples of the use of default-structure-
references; rather they emphasize certain fine points in the distinction be-
tween ordinary- and default-structure-references. More realistic examples are
given in the last part of this chapter, Section 11.11.7.

The above examples also illustrate how it is possible to be confused about
whether a structure-reference is ordinary or default when the address is a data
segment name. For this reason, default-structure-references should be used
cautiously and only when there is a very good reason.

A default-structure-reference provides no capability that cannot also be
achieved with a general-structure-reference. It is strictly a notational and
stylistic convenience.

11.9 General-Structure-References

11-34

A general-structure-reference is used when an ordinary-structure-reference
cannot provide the required field-reference. This usage arises in two ways.
First, a general-structure-reference must be used when the address of the
accessed data segment is an expression, so that the name of the data segment
(which is part of an ordinary-structure-reference) is not known. Second, a
general-structure-reference can be used to access a given data segment using a
different structure-definition than that which is associated with the name of
the data segment.

Data Structures

An example of the second use of a general-structure-reference is given in the
following block:

BEGIN
STRUCTURE
ARRAYLI» J3 My NI =
[MeN*ZUPVAL]
(ARRAY+(T*N+J) *ZUPVAL) 3§
OWN ALPHA: VECTORLZ20013
ARRAYLALPHA» 1 4+.,J350,41 = 03

e

END

The general-structure-reference interprets the vector ALPHA as a two-dimen-
sional array according to the structure-declaration for ARRAY. (The declara-
tion of this two-dimensional array structure is discussed in Section 11.11.3.)

11.9.1 Syntax

general-structure- structure-name
reference
[access-part

{ ; allocation-actual ,... }]
nothing

access-part segment-expression

{ , access-actual ,... }
nothing

segment-expression exptession
nothing

The syntactic names structure-name, access-actual and allocation-actual are
defined in Sections 11.3 and 11.4.

11.9.2 Restrictions

If the structure-name appears in the structure-body of the definition of the
structure-name, then the segment-expression must be non-empty.

An access-actual parameter must be given for each access-formal name that
appears in the structure-body of the definition of the structure-name.

An allocation-actual must be given for each allocation-name that appears in
the structure-body and that does not have an allocation-default.

Data Structures 11-35

11-36

11.9.3 Semantics

The interpretation of a general-structure-reference is:

1.

Use the structure-name to get the structure-body for the declaration of
that name.

If one or more of the access-actuals is a field-name, replace each field-
name with its defined sequence of field-component values. This replace-
ment may increase the number of access-actual expressions in the re-
sulting structure-reference.

Evaluate the segment-expression and associate the value with the struc-
ture-name in the structure definition.

Evaluate the access-actual expressions and associate the i’th access-
actual value with the i’th access-formal name in the structure defini-
tion.

In BLISS-16 or BLISS-32, if an allocation-unit or extension-attribute
keyword appears as an allocation-actual, replace it by a constant value
as follows:

Keyword Replaced by

LONG 4 <=32only
WORD 2

BYTE 1

SIGNED 1

UNSIGNED 0

Evaluate the allocation-actual expressions and associate the i’th alloca-
tion-actual value with the i’th allocation-formal name in the structure
definition. (Observe that each allocation-actual is a compile-time con-
stant value.)

Any allocation-formal that does not have a value already associated
with it from the previous step, but does have an allocation-default value
specified, is associated with that default value.

Evaluate the structure-body using the values associated with each of
the access-formals, allocation-formals and the structure-name.

Use the resulting expression (which is typically a field-reference) in
place of the structure-reference.

The order of evaluation of the segment-expression and access-actual expres-
sions is not defined (see Section 5.1.4).

The interpretation of a general-structure-reference combines the relevant
parts of the rules for interpretation of an ordinary-structure-reference and the
structure-attribute for a given data segment.

Data Structures

11.9.4 Discussion
A general-structure-reference of the form
structure-name [segment, access ,... ; allocation ,...]

is equivalent to the following field-reference:

BEGIN
BIND base = address

structure-name [allocation +ees 13
bhase [access +ees 1

END field-selector

where:
base is an arbitrary unique name created for the purpose of this
discussion.
address is the address part of the field-reference in the structure-

body of the declaration of the structure-name.

field-selector is the field-selector part of the field-reference in the struc-
ture-body of the declaration of the structure-name. (As the
syntax of Sections 11.2 and 11.3 show, a field-selector is
optional.)

The BIND declaration is described in Section 14.3.

As with an ordinary-structure-reference, the parameters of a general-struc-
ture-reference are evaluated once, and the resulting values can be used more
than once (see Section 11.7.4).

Unlike an ordinary-structure-reference, however, any field-name can be used
as an access-actual of a general-structure-reference. There is no way to desig-
nate a specific set of field-names that are valid; that is, there is nothing
analogous to the field-attribute for general-structure-references.

A general-structure-reference does not include (or need) anything analogous
to the REF keyword in a structure-attribute. The same effect is accomplished
by explicitly indicating the extra fetch in coding the segment-expression.
Consider the following:
OWN
A: VECTORL101:
B: REF VECTOR INITIAL(A);

e

ACL1T = 13
VECTORLA:15101 = 17
Bril = 13

VECTORL.B+13101 = 13

All four assignments have the same effect; namely, they assign one to the
second element of A. The first two assignments show the corresponding ordi-
nary- and general-structure-references for the non-REF structure A. The sec-
ond two assignments show the corresponding ordinary- and general-structure-
references for the REF structure B.

Data Structures 11-37

11.10 Predeclared Structures

11-38

The structures most commonly used in system programming are predeclared
in BLISS. The use and interpretation of each of these structures has already
been introduced in Chapter 3 and used in examples. This section presents the
definition of each of these structures.

The four predeclared structures provide no capability that is not available by
explicitly coding the structure-declarations given in the following sections.
They are predeclared in BLISS as a convenience and to foster the use of
uniform names for these common structures.

The predeclared structures are the following:
Structure-Name Usage

VECTOR A vector of signed or unsigned elements of uniform size
(bytes or words in BLISS-16; bytes, words, or long-
words in BLISS-32; and words in BLISS-36)

BITVECTOR A vector of one-bit elements
BLOCK A sequence of varying-sized fields
BLOCKVECTOR A vector of blocks.

The declaration and use of the predeclared BLOCK structure is discussed
here in detail because of its fundamental nature (along with VECTOR, dis-
cussed previously). The BITVECTOR and BLOCKVECTOR structures are
discussed more briefly because they are straightforward variations of the
VECTOR and BLOCK structures.

11.10.1 VECTOR Structures

A VECTOR structure is a sequence of elements of the same size. The number
of elements, n, is the extent of the vector. The elements are numbered from 0
to n-1. The generalized form of the structure-declaration is:

STRUCTURE
VECTORLIS N» UNIT=%ZUPUAL, EXT=01 =
[N#UNTITI

(VECTOR+I*UNIT)<O yZBPUNIT*UNIT sEXT >3

When this generalized declaration is made dialect specific, the resulting (ac-
tual) structure-declaration of VECTOR in each dialect is as follows:

e In BLISS-16 —

STRUCTURE
VECTORLIS Ny UNIT=2, EXT=0] =
[N*UNIT]
(VECTOR+I*UNIT)<O +B*UNIT sEXT >3

e In BLISS-32 —

STRUCTURE
VECTORLCIS Ny UNIT=4, EXT=01 =
[N*UNIT]
(VECTOR+I*#UNIT) <O B*UNIT sEXT >3

Data Structures

e In BLISS-36 —
STRUCTURE
VECTORLI NI =

[Nd
(VECTOR+IN<0O 363

The formal names of the structure-declaration have the following meanings:

Formal-Name Meaning

I The number of the element to be referenced
N The number of elements in the vector
UNIT The number of addressable-units in each element. The

valid values vary with the target system: 1 or 2 for
BLISS-16, and 1 through 4 for BLISS-32. (Since the only
valid value would be 1 in BLISS-36, the formal-name
UNIT is omitted in that dialect.) The default value,
%UPVAL, implies a fullword.

EXT The sign-extension rule to be used for fetching elements.
The valid values are 0 and 1. The default is 0, that is,
unsigned. (Note that sign-extension of a fullword is not
meaningful, thus the formal-name EXT is omitted in
BLISS-36.)

Example uses of this structure as structure-attributes in declarations are:

Example Interpretation

VECTORL101 A vector of 10 fullwords

VECTORL10 yWORD] A vector of 10 unsigned words in BLISS-16/32
VECTORLZ0,BYTE,SIGNED] A vector of 20 signed bytes in BLISS-16/32
REF VECTORLS] A reference to a vector of 5 fullwords
VECTORLZ0,3] A vector of 20 three-byte elements, in

BLISS-32 only.

11.10.2 BITVECTOR Structures

A BITVECTOR is a sequence of one-bit elements that are densely packed in
storage. The number of elements, n, is the extent of the bitvector. The ele-
ments are numbered from 0 to n-1. The generalized form of the structure-
declaration is:
STRUCTURE
BITVECTORLIS NI =

[N+ (ABPUNIT-1))/%BPUNITI
(BITVECTOR+I/ZBPUNIT)<I MOD YBPUNIT »1 03

The actual, dialect-specific forms of this structure-declaration are as follows:

e In BLISS-16 —

STRUCTURE
BITVECTORLIS NI =
COIN+7)/78) 1]
(BITVECTOR+(I"-3))<1 AND 7+1 403

Data Structures 11-39

e In BLISS-32 the following variation is used to take advantage of the less
restrictive field-references for better code quality —

STRUCTURE
BITVECTORLIF NI
L(N+7)/81]
BITVECTOR<I +1x3

e In BLISS-36 —

STRUCTURE
BITVECTORLIS N1
[L(N+35)/361
(BITVECTOR+I/3G)<I MOD 36,1033

The formal names of this structure have the following meaning:
Formal-Name Meaning
I The number of the element to be referenced
N The number of elements in the vector

Example uses of this structure as §tructure-attributes in declarations are:

Example Interpretation

REF BITVWECTORCLB81 A reference to a vector of 8 one-bit elements

BITVECTORLGO] A vector of 60 one-bit elements
Observe that the second data segment would occupy 8 bytes of PDP-11 or
VAX-11 storage, and would leave the four high order bits of the last byte
unused. On the DECSYSTEM-10/20 the first data segment would occupy one

word with 28 high order bits unused; the second would occupy two words with
12 high order bits of the second word unused.

11.10.3 BLOCK Structures

A BLOCK structure is a sequence of components. The individual components
of a block can be of various sizes. The generalized form of the structure-
declaration is:

STRUCTURE
BLOCKLOs Py 5y EF BS,s UNIT=%UPVALI =
[BS*UNIT]

(BLOCK+O*UNIT)<P 5 E¥ 3
The actual, dialect-specific forms of this structure-declaration are as follows:
e In BLISS-16 —

STRUCTURE
BLOCKEO: P» 8y Ei B8+ UNIT=21 =
[BS*UNITI]

(BLOCK+O%UNIT)<P S /E3}
e In BLISS-32 —

STRUCTURE
BLOCKLO,s P» 5» E5 BS» UNIT=41 =
[BS*UNIT]

(BLOCK+O*UNIT)<P S Ex}

11-40 Data Structures

e In BLISS-36 —

STRUCTURE
BLOCKLO,s Py 8y E5 BS] =
[BS1
(BLOCK+0)<P,5+Ex}

The formal names of this strﬁcture have the following meanings:

Formal-Name Meaning

0] The offset to the addressable-unit in which the field be-
gins

P The bit offset from the addressable-unit to the field be-
ginning

S The size of the field in bits. Valid values are 0 to
%BPVAL

E The extension flag. Valid values are 0 for zero-extension
and 1 for sign-extension

BS The number of allocation units needed to represent the
block, i.e., the block size

UNIT The size of the allocation-unit and offset in terms of ad-

dressable units. Valid values vary with the target system:
1 or 2 for BLISS-16, 1 through 4 for BLISS-32, and 1 only
in BLISS-36 (the formal-name UNIT is omitted in that
dialect). The default is %UPVAL, that is, a fullword.

Blocks are conventionally allocated in fullword units for most efficient opera-
tion of the hardware. (Using default fullword allocation also facilitates tran-
sportability of BLISS programs.)

11.10.3.1 A Typical Byte-Oriented BLOCK Structure — An example of a typi-
cal block on a byte-oriented target system (PDP-11 or VAX-11) is considered
in detail in the following paragraphs. The block is named ALPHA and has five
components, named A, B, C, D, and E. The VAX-11 target system and
BLISS-32 dialect are assumed for the purposes of this example as they pro-
vide the richest basis for explanation of the underlying BLISS structure mech-
anisms. (A BLISS-36 example would be somewhat simpler since addressable
byte boundaries are not considered. Analogous code fragments for BLISS-36
are shown in this discussion where appropriate.)

The layout of the example block in VAX-11 storage is:

DCB

A,32. :ALPHA

D,19 C5 B.8

E,32

Data Structures 11-41

11-42

This diagram uses the notation introduced at the beginning of this chapter, in
Section 11.1.2.

The name DCB refers to the layout of the fields relative to the starting ad-
dress of the block. Thus there could be more than one DCB block in storage at
a given time, one at ALPHA and others at other addresses.

The block is divided into five components, and the name and size are given for
each component. Component A contains 32 bits and occupies the four bytes
whose addresses are ALPHA through ALPHA+3. Component B contains 8
bits and occupies the byte at ALPHA+4. Component C contains 5 bits and
occupies the 5 low-order bits of the byte at ALPHA+5. Component D contains
19 bits and occupies the remaining bits of the byte at ALPHA+5 as well as the
next two bytes. Component E occupies the next longword.

11.10.3.2 BLOCK Field-References — Each component of a block has a field-
reference. The field-references for DCB are:

Component Field-Reference Analogue For BLISS-36
A of ALPHA (ALPHA+Q) <0 432,07 (ALPHA+0) <036 ,+02

B of ALPHA (ALPHA+4) <0 8,00 (ALPHA+1)<0 48,07

C of ALPHA (ALPHA+4) 48,5 ,0% (ALPHA+1)<B,5,0%

D of ALPHA (ALPHA+4)Y13 4,190 (ALPHA+1)<13+23:0%

E of ALPHA (ALPHA+8) <0 32,05 (ALPHA+2) <0436 40>

As a specific example of access to DCB, consider the field-reference for com-
ponent D of ALPHA. This expression is interpreted by locating the byte whose
address is (ALPHA+4) and then applying the field-selector <13,19,0> at that
position in memory. The field-selector starts at the low-order (rightmost) bit
of the designated byte, then skips 13 bits (first parameter) to the left, then
selects the next 19 bits (second parameter), and, finally, applies unsigned
extension (third parameter) if the access is a fetch.

The field-references given in the table reflect a bias towards fullwords. That
is, if ALPHA is a fullword address, then the expressions (ALPHA+4) and
(ALPHA +8) are also fullword addresses. This bias is natural for VAX-11, but
it is not essential. An alternative field-reference for component D that does
not show this bias is:

(ALPHA+5)<5,19,0% [No analogue in BLISS-36)

This field-reference is different from that given previously for D, but it selects
the same bits of storage.

Any of the field-references can be used for either a fetch or a store operation.
For example, to place the value 7 in component D of ALPHA, write:
(ALPHA+4)<13,19,0% = 7

11.10.3.3 BLOCK Allocation — A specific block data segment is allocated by
means of a BLOCK structure-attribute. The attribute provides values for the
allocation-formals of the BLOCK structure-declaration.

Data Structures

The following declaration allocates storage for the DCB block named ALPHA:

OWN
ALPHA: BLOCKL3.,413

The structure-attribute in this example is BLOCKI3,4], and it provides the
values 3 and 4 for the allocation-formals N and UNIT, respectively. When
storage is allocated for ALPHA, the structure-size expression in the declara-
tion of BLOCK is evaluated. That expression is N*UNIT and its value is
therefore 12. Thus 12 bytes of storage (3 fullwords) are allocated for ALPHA.

An equivalent declaration of ALPHA is:

OWN
ALPHA: BLOCKL313 [Also valid in BLISS-36]

In this declaration, the structure-attribute does not give a value for UNIT, so
the default value is used. (This declaration results in the allocation of three
fullwords in BLISS-36 also, whereas the prior version would not be valid in
that dialect.)

Yet another equivalent declaration is:

LITERAL
DCB.SIZE = 33

[IS

OWN
ALPHA: BLOCKIDCB.SIZEDS

This example uses a literal-name instead of a numeric-literal to provide the
value of the allocation-formal N. This practice is always desirable, and is
especially so when ALPHA is one of several data segments of the same form.
The use of the name-DCB__SIZE tells the reader explicitly that ALPHA will

eventually be used for the block diagrammed at the beginning of this section.

11.10.3.4 BLOCK Structure-References — A specific component of a data
block is accessed by means of a structure-reference. The structure-reference
begins with the name of the data segment and then gives values for the four
access-formals of the BLOCK structure declaration.

The following example ends by assigning 7 to component D of ALPHA:

LITERAL
DCB.SIZE = 33
OWN
ALPHA: BLOCKIDCB.SIZEDS

L)

ALPHALL 13418401 = 73

The structure-reference in this example is interpreted as follows. First, make
a copy of the structure-body of the declaration of BLOCK. That structure-
body is:
(BLOCK+O*UNIT)<P 6 4E >
Next, replace the “zero’th formal-name”, BLOCK, with ALPHA, giving:
(ALPHA+O*UNIT) <P 8 E>

Data Structures 11-43

Next, replace the allocation-formal UNIT with 4, giving:
(ALPHA+O%4) <P ,8,E >
Finally, replace the four access-formals, O, P, S, and E, with the correspond-
ing access-actual parameters, 1, 13, 19, and 0, giving:
(ALPHA+4)<13+19,0

This is the same as the field-reference given for component D in Section
11.10.3.2.

11.10.3.5 BLOCK Field-Declarations — The reference to component D of AL-
PHA is improved by the use of the BLOCK structure-name, but it still re-
quires a list of integer parameters, [1,13,19,0], that bears no obvious relation to
the description “component D of DCB”.

This problem could be solved by defining a macro, such as:

MACRO
DCB.D = 1:+13,18,0 %3

However, BLISS provides a special feature, the field-declaration, for this
purpose.

The following program fragment shows the complete mechanism for handling
the block ALPHA:

LITERAL
DEB_SIZE = 33
FIELD
DCB_FIELDS =
SET
DCB_A = [0+0,332,01,
DCB_B = [1+0,84+071,
DEB_C = [14+8:354+01,
DCB.D = [14+13518,01,
DCB.E = [2:0,32,01
TESS
MACROD

DCB = BLOCKIDCB_SIZEl FIELD(DCB.FIELDS) %3
CWN
ALPHA: DCB3i

LI}

ALPHALDCB-.DI = 73

The field-declaration defines the four-integer code for each component and
also gives a name, DCB_FIELDS, to the five field-names thus declared.

The declaration of the macro-name DCB is the final convenience; it permits
the block layout that is associated with ALPHA to be designated by a single
name, DCB.

When the macro-call on DCB is expanded, the declaration of ALPHA be-
comes:

OWN
ALPHA: BLOCKLCDCB-SIZE]l FIELD(DCB_FIELDS);

The field-attribute allows the five field-names associated with DCB__
FIELDS to be used in structure-references for ALPHA.

11-44 Data Structures

11.10.4 BLOCKVECTOR Structures

A BLOCKVECTOR structure is a vector of blocks. The number of elements,
n, is the extent of the vector and the size of each element is the size of a single

block. The elements are numbered from 0 to n-1. The structure-declaration
for BLOCKVECTOR in each dialect is:

e In BLISS-16 —

STRUCTURE
BLOCKVECTORLCI» O» Py Sy EF Ny BSs UNIT=Z1 =
EN*BE*UNIT]
(BLOCKVECTOR+(I*BS+0)*¥UNIT)<P+S+E> 3

e In BLISS-32 —

STRUCTURE
BLOCKVECTORLI,» Oy Py &y EF Ny BSs UNIT=4]1 =
[N*¥*BE*UNIT]
(BLOCKVECTOR+(I*BS+0)*UNIT)Y<P+8+E> 3

e In BLISS-36 —
STRUCTURE

BLOCKVECTORLIs Oy Py 8§y EF Ny BE] =

[N*¥BG]

(BLOCKVECTOR+(I*BS+0))<P 85 E> 3§

The formal names of the structure-declaration have the following meanings:

Formal-Name
I

N
BS
UNIT

Meaning

The number of the block element. Valid values are 0
through N-1

The offset to a field. Valid values are 0 through BS-1

Bit offset from the addressable-unit to the beginning of
the field

Size of the field in bits. Valid values are 0 through
%BPVAL

Extension rule. Valid values are 0 for zero-extension and
1 for sign-extension

The number of block elements in the vector
The number of allocation-units in each block element

The number of addressable-units in the allocation-unit

The BLOCKVECTOR structure is a combination of the allocation and access

definitions from the

BLOCK and VECTOR structures.

Using this structure, a declaration of a vector of DCB blocks (used as an
example of the BLOCK structure in section 11.10.3) is written:

DWN X¥¥: BLOCKVECTORL100,DCB.SIZE] FIELD(DCB_FIELDS);
This declaration allocates storage for 100 DCB blocks, each of which is three

fullwords in size.

Data Structures 11-45

If the contents of a variable J is 2 then
W HXMI . J+DCB-DJ
fetches the value of the D field of the third block in the vector.

Observe that the field-declaration used with the block discussed in Section
11.10.3 is used with the blockvector discussed here.

11.11 Other Structures

11-46

The predeclared structures described in the previous section are included in
BLISS because they occur frequently in many types of programs. However,
they are only a sample of the wide range of structures that can be defined
using the structure declaration. This section sketches some additional struc-
tures that illustrate some of the other possibilities.

To minimize the complexity of the example structures presented, only full-
word versions of the structures are defined. These examples could be aug-
mented in a variety of ways to be more flexible. Also, the structure-declara-
tions are written in parameterized, transportable form (using the predeclared
literal %UPVAL) such that they are valid in all dialects.

11.11.1 “One-Origin” Vector Structures

The definition of vector presented previously numbered the elements of the
vector from 0 to n-1, where n is the number of elements of the vector. In some
applications, it is more natural to number the elements from 1 to n instead.

A structure that accomplishes this is:

STRUCTURE
VECTORILIS NI =
[N*7UPVALI]

(VECTORL1+(I-1)*7UPVAL) S

This structure differs from the VECTOR structure previously presented in
that 1 is subtracted from the element number before the offset relative to the
base of the vector is computed.

11.11.2 “Bounds Checking’’ Vector Structures

On occasion, particularly during debugging, it is desirable to perform validity
checking of the access-actuals of a structure-reference. For the VECTOR1
structure just given, bounds checking can be accomplished as follows:

STRUCTURE
VECTORICHKLIS NI =
[N*7UPVALI]
BEGIN
LOCAL T3
T =13
IF +T LSS 1 OR +T GTR N
THEN
BEGIN
ERRORC.T) 3
T = 13
END 3
VECTORICHK+ (. T-1)*ZUPVAL
END 3 i

Data Structures

This structure calls a routine ERROR for those cases in which the value of I is
not in the valid range of 1 through N inclusive.

11.11.3 Two-Dimensional Array Structures

A zero-origin two dimensional array structure can be defined as follows:

STRUCTURE
ARRAYLI s J§ My NI =
[M*N*ZUPVAL]
(ARRAY+ (T *N+J)*ZUPVAL) 3

This structure stores elements in “row-order” as in PL/I.

A similar structure that stores elements in one-origin “column-order”, as in
FORTRAN, can be defined as follows:

STRUCTURE
ARRAYBYCOLLI, J3 My NI =
[M*N*ZUPUAL]
(ARRAY+((J-1) %M+ (I-1))*%UPVAL) 3
This structure differs from the previous example in the following ways:

e I is replaced by I-1 and J is replaced by J-1 to get one-origin numbering
of the elements.

e [and J are interchanged in the structure-body, as are M and N, to get
column-ordering instead of row-ordering.

11.11.4 Symmetric Array Structures

A symmetric array is a square array in which the contents of A[l,J] is equal to
the contents of A[J,I]. For such an array, it is not necessary to allocate storage
for the entire array.

A symmetric 3-by-3 array can be diagramed as follows:

J —

|
(1,1) (1,2) (1,3)
(2,2) (2,3)
(3,3)

The number of elements needed to represent a symmetric array is:

n ¥ (n+l1)/2

where n is the number of elements in each dimension. In the 3-by-3 example
above this gives 3*4/2, or 6, elements.

The storage for such an array can be allocated with the elements in the
following order:

(lal) s (142) (242 (1+3)y (2:3): (3:3)

Data Structures 11-47

11-48

If j is greater than or equal to i then the linear position of the (i,j) element in
the storage sequence is given by the formula

J¥(g-1)/72+i

In the 3-by-3 example above, the position of the (2,3) element is
3%(3-1)/2+2 = 5

That is, element (2,3) is the fifth element of the linear sequence.

This analysis can be incorporated into a structure declaration for symmetric
arrays as follows:
STRUCTURE
SYMARRAYLI,» J3 M1 =
[(M*(M+1)/2)%%UPVAL]
(SYMARRAY -%UPVAL+
(IF J GTR 1
THEN
J¥(J-1)/2+1
ELSE
I*(I-1)/2+J
) *LUPUYAL
)5

Declaration and use of this structure is the same as for an ordinary two-
dimensional one-origin array. For example,

OWN SYMX: SYMARRAYL10,1013

declares and allocates a 10-by-10 symmetric array named SYMX. It occupies
55 fullwords of storage.

The sum of the 100 “logical’”’ elements of the array can be computed as shown
in the following:

SUM = O3

INCR I FROM 1 TO 10 DO

INCR J FROM 1 TO 10 DO
SUM = .BUM + BYMHL.Is+sJ13

11.11.5 Non-Continuous Block Structures

The predeclared definition of the BLOCK structure given previously assumes
that all of the fields of the block are contiguous in memory. In some cases this
might not be possible or desirable. For example, a storage management sub-
system might be in use that provides only a fixed-size block of memory. In
such a circumstance it may still be desirable to reference a “logical block” as
an entity even though it might be represented using more than one physical
block of memory.

The following structure illustrates a way to achieve this:

STRUCTURE
LBLOCKLOs Py §y Ey I1 =
(CASE I FROM O TO 1 OF

SET
LOT: (LBLOCK+O*ZUPVAL) j
Ci13: (+LBLOCK+O*ZUPWYVAL) 3
TES

YLP 1S sE =S

Data Structures

Since this structure is only intended to be used with dynamically allocated
memory, the definition does not contain a structure-size expression.

A typical declaration of a data segment that points to an instance of this
structure is:

OWN XPTR: REF LBLOCK:

To understand this structure, consider the following diagram:

! : XPTR
B A

c

D

E

F
H G

~————— %BPVAL bits —

LBLOCK Organization

The diagram illustrates a logical block consisting of 9 fields named A through
I. The logical block is represented as two physical blocks. Each physical block
consists of four fullwords, the assumed fixed-size storage management unit.
The arrows indicate fields that contain the address of the first block and of the
remainder of the logical block.

The first physical block is like the BLOCK structure described in Section
11.10.3. However, the access formal list for the LBLOCK structure includes
an additional formal name, I, that the BLOCK structure did not have. This
formal name is used in the structure-body to choose one of two expressions as
the structure address expression.

The field-name for A is defined as follows:

FIELD A = [10%BPVAL/2,1,01%

Data Structures 11-49

11-50

When used in a structure-reference to XPTR, the last 0 in this definition
causes the first case-line of the structure-body to be used, and thus the refer-
ence

KPTRLA]
is like a BLOCK reference.

A field in the second physical block, such as F, is defined using a 1 as the last
value, as in:

FIELD F = [1,0,4BPYAL 1,113

The last 1 in this definition causes the second case-line to be used. Examina-
tion of the second case-line shows that it is just like the first except that the
contents of the first fullword of the first physical block is used as the base for
applying the offset, position, size and extension values.

A reference to this field is written in the same way as a reference to the A field,
that is, as:

APTRLF]

The “extra indirection” used to reference this field is “hidden’ in the struc-
ture and field definitions used to define the logical structure.

11.11.6 Partially Overlayed Structures

Some programming applications require data structures that are similar with
respect to some, but not all, of their fields.

For example, consider the symbol table of a compiler. The table must accom-
modate different kinds of identifiers (symbols), and has a different kind of
block for each kind of identifier. However, in order to make the table useful,
some fields will appear in all blocks of the table. One such common field will
be the “type field”, which specifies which kind of identifier a given block
represents.

As another example, consider the table of device control blocks in an opera-
ting system. Once again, the table must have different kinds of blocks, one
kind for each kind of device; and, once again, some fields will appear in all
blocks of the table. In this example, the common fields might be the priority
level, a pointer to a queue of operations, and a device type code.

As a basis for illustration, consider the following diagram:

N
F TYP | LEN \\
R TYP | LeN
NAME_PTR NAME_PTR
VALUE Q z
LINK
BLOCK Type 1 BLOCK Type 2

Data Structures

The diagram shows two different blocks that share some common fields,
namely: LEN, TYP, and NAME__PTR. Each block also has fields that are
not common with the other block; indeed, the blocks are not even the same
size.

The following declarations illustrate one way to code the definitions of these
two blocks, using BLISS-36 as the sample dialect:

FIELD

COM_FLDS =
SET
LEN = [O,0:12,01,
TYP = [O»12412:01,
NAME_PTR = [14+0,36,01
TES »

TYP1_FLDS =
SET
F o= [O:24,124,01
VALUE = [2:0,:36,01
TES »

TYP2_FLDS =
SET
2 = [2+0:18:01),
Q = [2:,18+18,11
LINK = [3:+0:36:01]
TES 3

MACRO
TYP1_.BLOCK BLOCKL31 FIELD(COM_FLDS »TYPL.FLDS)Y %

Hou

TYPZ_BLOCK
The field-declaration defines three sets of fields: ‘
COM_FLDS, for fields that are common to both types of block,
TYP1_FLDS, for fields that are specific to the first type of block, and
TYP2_FLDS, for fields that are specific to the second type of block.

The macro-declaration defines two macros, one for each kind of block; the
expansions give the attributes appropriate for each kind of block.

BLOCKLAI FIELD(COM.FLDS,TYPZ.FLDS) %3

These macro-names can be used in data declarations such as:

OWN

STARTUP: TYPL1_BLOCKS
LOCAL

PTR: REF TYPZ_.BLOCK]

Observe that in the declaration of PTR (as LOCAL) the structure-attribute is
REF BLOCK]|4], where REF is given explicitly and BLOCKI[4] results from
the expansion of TYP2__BLOCK. If BLOCKI[4] and FIELD (COM_
FLDS, TYP2__FLDS) had been given in the opposite order in the macro defi-
nition of TYP2__BLOCK, then additional macro definitions would be needed
in order to declare data segments with REF structure-attributes.

Data Structures 11-51

The definition technique shown above has two advantages:

1. The common definition information is given only once, thereby avoiding
the possibility of clerical errors in giving the same information in multi-
ple field-set definitions.

2. Depending on specific details, changes or additions to the common
fields can be made in one place, which is easier and more reliable than
making corresponding changes in many places.

11.11.7 General Purpose Structures for Default Structure
References

Some programming applications involve complicated data structures using
blocks of various types connected together by pointers. If the nature of the
application involves frequent access to blocks related to a given block by
“following pointers”, there may well be notational advantages to using a
default structure (see Sections 11.8 and 18.2).

To illustrate this, first consider how an example might be coded without using
default structures. Suppose the following block is being used to represent a
node in a tree structure, such as might be used for expressions in a compiler.

OoP

LEFT_OPND

RIGHT_OPND

The op field is used to contain a code for the kind of arithmetic operator
represented, and the LEFT_OPND and RIGHT_OPND fields are used to
contain addresses of other such nodes.

A routine to compare the OP fields of the two subnodes of a given node for
equality might be coded as follows:

ROUTINE COMPARE_SUBOPS(NODE) =
BEGIN
MAP NODE: REF TREE FIELD(TREE_FIELDS)
LOCAL
L.PTR: REF TREE FIELD(TREE_FIELDS)
R_PTR: REF TREE FIELD(TREE_FIELDS):

L_.PTR = .NODELLEFT_OPNDI13
R_PTR = NODELRIGHT.OPND1:
IF JL-PTRLOPI EQL .R_PTRLOPI
THEN
P I Actions if subnodes have same OP value
END 3

The structure and field name definitions assumed in this example should be
obvious from earlier examples and are not shown.

11-52 Data Structures

The same effect can be achieved using. a default structure as follows:

ROUTINE COMPARE_.SUBOPS1(NODE) =

BEGIN .

SWITCHES STRUCTURE (REF TREE) 3

IF NODELLEFT_OPNDILOP] EQL .NODELRIGHT.OPNDILOP]

THEN o

er e d ! Actions if subnodes have same OP wvalue

END 3
This second version is slightly shorter. It is also more suggestive of the “logi-
cal” access being performed because intermediate assignments are not needed
simply to obtain a data segment name (such as L__PTR in the first version)
that is declared with the appropriate structure properties for each step along

the path of access.

Observe that the default structure in this example is a REF structure. This
means that each step in the access path necessarily makes a fetch to obtain
the base address for the next field access.

Data Structures 11-53

Chapter 12 Routines

12.1

12.2

12.3

124

12.5

12.6

12.7

Ordinary-Routine-Calls. 12-1
12.1.1 Syntax.o e e e e e e e e e e e 12-3
12.1.2 Restrictionso o e e e e e e 12-3
12.1.3 Semantics e e e e e 124
12.1.4 Pragmatics. oo o e 12-4
General-Routine-Calls 12-5
12.2.1 Syntax. Lo o e e e e e e e e e e e e e 12-5
12.2.2 Restrictions o 0 e e e e e e e 12-6
12.2.3 Semantics o e e e e e e e e e e 12-6
Routine-Declarations. e e e e e e e e 12-6
12.3.1 Syntax.o 12-7
12.3.2 Semantics e e e e e e e e e e e e e e e 12-7
Ordinary-Routine-Declarations 12-7
12,41 Syntax. e e e e e e e e e e e e e e e e e 12-9
12.4.2 Restrictions0 e e e e e e e 12-10
12.4.3 Defaults e e e e e e e e 12-10
12.4.4 Semantics v e e e e e e e e e e e e 12-10
12.4.5 Pragmatics.o e e e 12-11

12.45.1 Parameter Passing. 12-11

12.4.5.2 Allocation of Formal-Name Data Segments 12-13

12.4.5.3 Attributes for Formal-Names 12-13

12.4.5.4 Computed Routine Addresses. 12-13
Global-Routine-Declarations 12-14
12.5.1 Syntax. 0 e e e e e e e e e e e 12-15
12.5.2 Restrictions 0 e e e e e e e e e e 12-15
12.5.3 Defaults e e e e e 12-15
12.5.4 Semantics o e e e e e e e e e 12-16
Forward-Routine-Declarations 12-16
12.6.1 Syntax. e e e e e e e 12-16
12.6.2 Restrictions« v v vt e e e e e e e e e e e e 12-17
12.6.3 Semantics e e e e e e e e e e 12-17
External-Routine-Declarations 12-17
12.7.1 Syntax.« . . 0 0 e e e e e e e e e e e e e e 12-17
12.7.2 Restrictions 0 e e e e e e e e e e e 12-18

12.7.83 Semantics 0 e e e e e e e e e e e e e e 12-18

Chapter 12
Routines

Routines are the logical units from which a program is built. Each routine
describes a portion of the program that is relatively complete and independ-
ent. The design of BLISS permits a routine to have its own block structure
and local data.

A program has a single main routine (see MAIN module-switch, Section 19.2).
The main routine controls the computation, but it can delegate parts of the
computation to subordinate routines. Each subordinate routine can, in turn,
delegate part of its computation to its own subordinate routines. A routine can
also call an external routine (one defined outside of its own block or module)
to perform a commonly needed function, for example.

The use of routines has two sides: the calling of routines and the declaration of
routines. The first two sections of this chapter describe routine-calls. The
remaining five sections describe routine-declarations.

The linkage-declaration, which controls the instruction sequence generated
for a call on a given routine, and the register-management discipline used
within the routine, is described in Chapter 13 along with other linkage-related
declarations.

12.1 Ordinary-Routine-Calls

A routine-call causes the execution of a routine that has been declared as part
of the same module or some other BLISS module, or of a program written in
another language.

12-1

12-2

Two kinds of routine-calls are provided: ordinary and general. The ordinary-
routine-call is by far the most commonly used form: it gives the name of a
routine and relies on the compiler to determine, from the declaration of the
named routine, the appropriate linkage (or calling sequence).

A general-routine-call is self-contained. It gives all of the information needed
for calling the routine.

An example of an ordinary-routine-call is given in the following program
fragment:
OWN
Ay
B3
XTERNAL ROUTINE
RFACT 3

+

A = RFACT(.B)
END

The RFACT routine is declared in another module. The function of the rou-
tine is to determine the factorial of a given parameter. The result is the value
of the routine; therefore, the routine does not have a NOVALUE attribute.
The routine-call RFACT(.B) causes the contents of input-actual-parameter B
to be passed to the factorial routine and the returned result to be assigned to
location A. (The routine RFACT declaration is given in Section 12.4.)

In the example, the routine-call is used to pass an input-parameter; however,
output-parameters may also be passed. When this is done, each output-ac-
tual-parameter is treated like the left-hand side of an assignment expression
defining where an output-register value (from the called routine) is to be
stored.

Output-parameters permit a routine to return results that are larger than a
BLISS value or to return several values at once. For example, a double-
precision floating point value can be returned in RO and R1.

In the routine-call syntax, output-parameters follow input-parameters and
are separated by a semicolon (;).

Routines

12.1.1 Syntax

routine-call { ordinary-routine-call }

general-routine-call

ordinary-
routine-call routine-designator

{ input-actual-parameter ,... }
nothing

{ ; output-actual-parameter ,... })
nothing

routine-designator | primary

input-

actual-parameter { eXpressmn}

nothing

output-

actual-parameter { eXpression}

nothing

12.1.2 Restrictions

The number of input-actual-parameters in a routine-call must agree with the
number of input-formal-parameters in the routine-declaration. (This restric-
tion can be relaxed through use of the linkage-functions described in Section
13.6.)

The value of each input-actual-parameter must be consistent with the context
in which the corresponding input-formal-parameter is used in the routine
declaration.

An output-actual-parameter may be any expression, including an undotted
register-name qualified by position, size, and sign-extension information (i.e.
field-reference).

The number of output-actual-parameters must be less than or equal to the
number of output-formal-parameters specified in the routine declaration.

An output-actual-parameter must not be specified if a corresponding output-
parameter-location register is not specified in the linkage.

Routines 12-3

12-4

The evaluation of the routine-designator must yield the value of a name that
has been declared ROUTINE.

The linkage of the routine-designator (determined as described in Section
12.1.3) must be the same as the linkage-attribute in the declaration of the
routine that is called.

A linkage-name defined with the linkage-type INTERRUPT or RSX__AST
may not be used in a general-routine-call.

The order in which the routine-designator and actual-parameters are evalu-
ated is as follows: Input-actual-parameters are evaluated prior to the routine
call, and output-actual-parameters are evaluated when the routine returns to
the caller.

12.1.3 Semantics
An ordinary-routine-call is interpreted as follows:
1. Evaluate the routine-designator and the actual-parameters.

2. Determine the linkage to be used with the routine-designator. If the
routine-designator is a routine-name, then the linkage is given by the
linkage-attribute (explicit or default) in the declaration of the routine-
name. Otherwise, the linkage is given by the linkage-name established
in a LINKAGE switch or, if no LINKAGE switch applies, the linkage is
the default linkage-name for the dialect in use (BLISS for BLISS-16/32;
BLISS36C for BLISS-36).

3. Associate the actual-parameters with the formal-parameters of the rou-
tine called. The value of the i’th actual-parameter becomes the content
of the i’th formal-parameter.

4. Create a stack frame. The kind of stack frame and the details of its
organization depend on the linkage of the routine.

5. Evaluate the routine-body.
6. Delete the stack frame.

Evaluate the output-actual-parameter expressions and assign the
returned output-register values to the appropriate output-actual-
parameters.

8. If a value is returned, use that value as the value of the routine-call.

The linkage used in a routine-call does not affect the semantics of the call, but
instead affects the details of how the call is carried out. Linkages are de-
scribed in Chapter 13.

12.1.4 Pragmatics

An input-actual-parameter in a routine-call can be a %REF standard func-
tion. This function is especially designed for use in routine-calls. It is de-
scribed and illustrated in Section 5.2.2.3

Routines

12.2 General-Routine-Calls

A routine whose address is computed during execution can be called with a
linkage other than the default linkage using a general-routine-call. An exam-

ple of a general-routine-call is given in the following program fragment:

XKTERNAL ROUTINE

Flz:

F2u

F3:
BIND

TABLE =

L]

UPLIT(F1F2F3)

FORTRAN_SUB NOVALUE
FORTRAN_SUB NOVALUE
FORTRAN.SUB NOVALUES

: VECTOR

FORTRAN_SUB(.TABLEL.I1+ P1, PZ)

LI

The address of the FORTRAN routine to be called is computed by fetching an
element of a vector. Because the routine has linkage-type FORTRAN__SUB,
the general-routine-call must be used to give the compiler the information
necessary to generate the correct form of routine-call.

12.2.1 Syntax

general-routine-
call

linkage-name

(routine-address

}”{
M

, input-actual-parameter ,...
nothing

; output-actual-parameter ,...

}\
X

nothing
_ nothing)
linkage-name name
routine-address expression
input- .
actual-parameter { expression }
nothing
output- _
actual-parameter | { expr§851on}
nothing
Routines 12-5

12.2.2 Restrictions

For BLISS-16, a linkage-nafhe defined with the linkage-type INTERRUPT or
RSX__AST may not be used in a general-routine-call.

The evaluation of the routine-address expression must yield the address of
a routine that is declared with the specified linkage-name as its linkage-
attribute.

The number of input-actual-parameters in a routine-call must agree with the
number of input-formal-parameters in the routine-declaration. (This restric-
tion can be relaxed through use of the linkage-functions described in Section
13.6.)

The value of each input-actual-parameter must be consistent with the context
in which the corresponding input-formal-parameter is used in the routine-
declaration.

An output-actual-parameter may be any expression, including an undotted
register-name qualified by position, size, and sign-extension information (i.e.
field-reference).

The number of output-actual-parameters must be less than or equal to the
number of output-formal-parameters specified in the routine declaration.

An output-actual-parameter must not be specified if a corresponding output-
parameter-location register is not specified in the linkage.

The order in which the routine-address expression and actual-parameters are
evaluated is as follows: Input-actual-parameters are evaluated prior to the
routine call, and output-actual-parameters are evaluated when the routine
returns to the caller.

12.2.3 Semantics

In a general-routine-call, the routine-address expression is interpreted as the
address of the routine to be called and the remaining expressions are inter-
preted as the actual parameters of the call. The linkage to be used is given by
the linkage-name. In all other respects, the semantics is the same as for an
ordinary-routine-call.

12.3 Routine-Declarations

12-6

A routine-name can be declared in five different ways in BLISS. An ordinary-
routine-declaration is used to give the definition of a routine that is used only
in the block in which it is declared. A global-routine-declaration is used to

Routines

give the definition of a routine that is used in other modules as well as in the
module in which it is declared. A forward-routine-declaration declares the
name of a routine so that it can be called from a point in the block that
precedes its complete definition, which is given by an ordinary- or global-
routine-declaration. An external-routine-declaration declares the name of a
routine whose definition is given as a global-routine-declaration in another
module. A bind-routine-declaration gives the definition of the address of a
routine in terms of an expréssion.

The first four ways of declaring a routine-name are described in the following
sections. The bind-routine-declaration is described in Section 14.4.

12.3.1 Syntax

ordinary-routine-declaration
global-routine-declaration
forward-routine-declaration
external-routine-declaration

routine-declaration

12.3.2 Semantics

The semantics of the routine-declaration is given in the following sections
where each kind of routine-declaration is considered separately.

12.4 Ordinary-Routine-Declarations

An ordinary-routine-declaration defines a routine. The scope of the declared
routine-name is the immediately containing block (including all contained
blocks). The declaration includes an expression, the routine-body, which is
evaluated each time the routine is called. The declaration also includes a list
of formal-names. When the routine is called, the value of each actual-parame-
ter in the routine-call is assigned to the corresponding formal-name. The
formal-names can be accessed in the routine-body as if they were LOCAL
data segment names, except that values must not be assigned to them.

A BLISS routine can be recursive. A routine is recursive if it can be called
while a previous call is still active. Recursion can be direct or indirect. Direct
recursion occurs when the routine contains a call on itself; for example, the
routine-body for the routine A contains a call on the routine A. Indirect

untines 12-7

12-8

recursion occurs when the routine contains a call on another routine, which
ultimately results in a call on the routine being declared; for example, the
routine-body for the routine A contains a call on the routine B, which contains
a call on the routine A.

An example of an ordinary-routine-declaration is:
ROUTINE AVERAGE3(F1+F24+F3) = (,F1 + .F2Z + .F3)/3;

The routine AVERAGES has three formal-names F1, F2, and F3. An example
of a call on this routine is:

AVERAGE3 (S, +A, B*.C)

Another example of an ordinary-routine-declaration is the declaration of
a factorial routine. This routine computes the mathematical function
factorial(n):
ROUTINE IFACT (N) =
BEGIN
LOCAL
RESULT 3
RESULT = 13
INCR I FROM 2 TO N DO
RESULT = RESULT*.I13
JRESULT
END 3

When the routine IFACT is called it computes the factorial of the actual-
parameter specified. Observe that if the content of N is less than 2, the
indexed-loop is not executed and the value of the routine is 1. An example of a
call in this routine is:

IFACTC(.A * ,B)

In this example, if the content of A is assumed to be 2 and the content of B is
assumed to be 3, the result returned by the call is 720.

The factorial routine could be rewritten as a directly recursive routine, as
follows:
ROUTINE RFACT (N) =
IF N GTR 1
THEN
N % RFACT (N - 1)

ELSE
13

(For the computation of a factorial the first version, IFACT, is more efficient
than the recursive version, RFACT. Recursion is used when it is the most
natural and/or efficient method.)

Routines

12.4.1 Syntax

ordinary-routine-
declaration

ROUTINE routine-definition ... ;

routine-definition

routine-name

(input-list)
(; output-list

(input-list ; output-list)
nothing

{ : routine-attribute }
nothing

= routine-body

routine-name

name

input-list

input-formal-parameter ,...

output-list

output-formal-parameter ,...

input-
formal-parameter

output-
formal-parameter

formal-item

formal-item

formal-name { : formal-at,tribute-list}

nothing

formal-name

name

formal-
attribute-list

{ map-declaration-attribute... |

map-declaration-
attribute

<= 16/32 Only
<= 16/32 Only

allocation-unit
extension-attribute

field-attribut